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Abstract

This paper proposes a force method based structural analysis algorithm for geometrically non-linear bar assemblies. Like the linear
force method, the method is suitable for both statically and kinematically indeterminate assemblies, which have been widely used in non-
traditional structures such as tension structures and tensegrities. The geometrically non-linear force method is able to produce much
more accurate solutions when the infinitesimal mechanisms exist in the assembly, which has been illustrated by a number of examples.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Computational structural analysis is normally carried
out using displacement-based methods such as the Finite
Element Method (FEM) where the displacements are used
as variables. It is very effective and well tested. The Force
Method (FM) has been more neglected. In comparison
with the displacement-based method, the FM has its inher-
ited advantages: the physical concepts of each item in the
equations are fairly explicit; and the essential structural
and kinematic properties, e.g., the rigid body motions or
infinitesimal mobilities, states of the self-stress, etc., can
be interpreted clearly from the orthogonal subspace of
the equilibrium matrix. These advantages have made the
FM an important part of the curriculum in the subject of
the structural mechanics. However, the FM is less conve-
nient in terms of the matrix operation. The computation
requires a large amount of computer memory and hence
becomes computationally expensive. Although some early

books on the methods of numerical structural analysis still
introduce the FM [1], the frequency of its appearance has
steadily declined despite many scholars’ effort to revive
the FM [2–4]. But this trend has stopped when a family
of unorthodox structures, e.g., tension structures and
tensegrities, were encountered in 1990s.

For tension structures and tensegrities, the stiffness
matrix may not have full rank. The displacement-based
methods, which are the most efficient for statically determi-
nate or redundant assemblies, becomes invalid. Although
this problem can be dealt with numerically, to employ
the FM provides a more satisfactory solution. On the other
hand, in the design of tension structures or tensegrities, it is
important to know the existence of the states of self-stress
and the accompanied finite or infinitesimal mobilities. The
displacement-based methods usually do not give such
information. It is therefore necessary to seek a different
approach.

One of the important papers in the revival of the FM is
given by Pellegrino and Calladine [5]. The analysis of the
equilibrium matrix was introduced to determine the kine-
matic determinacy and states of the self-stress. Pellegrino
then extended the method to analyze the prestressed
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structural assemblies such as the cable networks [6]. How-
ever, only linearity was considered in his analysis though
the infinitesimal mobilities, if they existed, could lead to
geometrical non-linearity. A more precise non-linear anal-
ysis is therefore required to produce more accurate results
of displacements. This paper deals with this matter.

The layout of the paper is as follows. In Section 2, we
introduce the basic principle of the FM based on the matrix
analysis. It is followed by the geometrically non-linear
analysis procedures in Section 3. A few examples are given
in Section 4, some of which were first included in [6] using
linear analysis. The results are compared. Section 5 con-
cludes the paper with discussion and some suggestions
for future work.

2. The matrix force method

The FM is best illustrated using a bar assembly. Its equi-
librium and compatibility equations can be written in the
following matrix forms:

At ¼ q ð1Þ
Bd ¼ e ð2Þ

It can be proved that [8]

B ¼ AT

Thus

ATd ¼ e ð3Þ

Assume that the material remains linear elastic. We have

e ¼ e0 þ Ft ð4Þ

The solution can normally be obtained from Eqs. (1), (2)
and (4) unless the assembly is statically or kinematically
indeterminate in which A become a rectangular matrix.
In this circumstance, the solution can only be calculated
through the null space basis and subspace of the equilib-
rium matrix A, which is explained next.

Assume that the dimension of A is nr · nc. The SVD
expression of A is

A ¼ U
S 0

0 0

� �
VT ð5Þ

Substituting Eq. (5) into Eqs. (1) and (3) gives

t ¼ t0 þ Vsa ð6Þ
and

d ¼ d0 þUmb ð7Þ
t 0 and d 0 are the special solution of Eqs. (1) and (3) and can
be expressed as

t0 ¼ VrS
�1UT

r q ð8Þ
d0 ¼ UrS

�1VT
r e ð9Þ

Substituting Eq. (6) into Eq. (4) yields

e ¼ e0 þ Ft ¼ e0 þ F t0 þ Vsað Þ ð10Þ
Because [7]

VT
s e ¼ 0 ð11Þ

Eq. (10) becomes

VT
s e0 þ Ft0
� �

þ VT
s FVsa ¼ 0 ð12Þ

from which a can be deduced.
b of Eq. (7) can be determined according to the virtual

work principle

Nomenclature

A = Al + Anl the equilibrium matrix (nr · nc), where Al

is the linear part and Anl is the non-linear part
B the compatibility matrix (nc · nr)
d ¼ ð dx dy dz ÞT the nodal displacement vector
d 0 the special solution of nodal displacement vector

obtained from the compatibility equations
e the strain vector of the links
e0 the initial strain vector of the bar
E the elastic modulus
F the flexibility matrix (nr · nr)

lij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

ij þ y2
ij þ z2

ij

q
the initial length of the bar i � j,

where xij = xj � xi, yij = yj � yi, zij = zj � zi

m = nr � r number of inextensional mechanisms
nc the number of columns in A

nr the number of rows in A

q the nodal load vector
r the rank of A

S = diag{s11, s22, . . . , srr} where sii is the singular value

s = nc � r number of states of self-stress
t the internal axial force vector
t 0 the special solution of internal axial force vector

obtained from the equilibrium equations
U ¼ ½Ur Um � the unitary orthogonal matrix, here Ur

is the left singular vectors and Um is modes of
inextensional mechanisms respectively

V ¼ ½Vr Vs � the unitary orthogonal matrix, where Vr

is the left singular vectors and Vs is independent
modes of self-stress respectively

W the external forces applied at node
Xl ¼ ð xl yl zl ÞT the Cartesian coordinates of node l

in its original positions
a vector containing s real numbers
b vector containing m real numbers
Xd,Xq convergence parameter based on residual dis-

placements and residual forces respectively
ð Þp denote the corresponding response at step (p)
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