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A B S T R A C T

Technical research on energy productivity can support government officials as they evaluate practical energy
policies for the future. This study proposed a parametric method to decompose China's energy productivity rate
of change into six factors based on a theoretical stochastic frontier analysis. The method was applied to conduct
an empirical study using inter-provincial panel data in China from 1995 to 2012. The results highlighted three
key points. First, the general rate of change in energy productivity was mainly influenced by a steady positive
rate of change in technical progress, combined with a steady negative rate of change in technical efficiency. The
core factors causing fluctuations in energy productivity included: a positive rate of change in the substitution of
capital and energy, and a negative rate of change in the substitution of labor and energy. Second, from a
geographic perspective, provinces with a high rate of change in technical progress experienced a weaker
deterioration in technical efficiency. However, the rate of change in technical efficiency tends to decline as the
rate of change in technical progress increases. Third, there is a similar changing trend between the substitution
of capital and energy and the substitution of labor and energy.

1. Introduction

Energy is required for production, and significantly influences the
economy. However, economic growth that depends on energy, espe-
cially fossil fuels, can impede sustainable economic development and
harm the ecological environment. There are many signals that China
must resolve problems with the relationship between energy and
economy. These signals include: the tension between energy supply
and demand; an annual average $100 billion economic loss (approxi-
mately 5.8% of gross domestic product (GDP)) caused by environ-
mental pollution (World Bank, 2007); China's 2014 worldwide ranking
at 118th for environmental-protection performance; and China's
carbon reduction commitment at the Copenhagen Conference. Given
this background, improving energy efficiency is a significant way to
solve the energy problem.

Researchers have defined energy efficiency differently, using terms
such as energy physical efficiency (Sakamoto et al., 1999), energy
thermodynamics efficiency (Lister and Buffett, 1995), energy allocative
efficiency (Khiabani and Hasani, 2010), energy productivity (the
inverse of energy intensity, defined as the ratio between economic
output and energy input) (Panesar and Fluck, 1993; Dimitropoulos,

2007), and total factor energy efficiency (Hu and Wang, 2006; Wang
et al., 2013; Özkara and Atak, 2016).

Energy productivity is easier to understand than these terms, and is
more easily compared across time and space. Energy productivity can
constrain social and economic development from the perspective of
input factors, and can be decomposed into useful effects, including
substitutions between energy and other input factors. Therefore,
energy productivity is a widely used metric in China (Wang, 2007;
Wang and Wei, 2016).

China's overall energy productivity rose from 2886.70 to 5160.78
thousand Renminbi (RMB) per thousand tons of standard coal between
1995 and 2012, representing an average annual growth rate of 3.99%
(National Bureau of Statistics of China (NBSC), 2013). The following
discussion reviews the factors impacting the rapid growth in energy
productivity.

First, China's rate of change in overall energy productivity has
fluctuated significantly. Energy productivity experienced a variable
increase from 1995 to 2001 and 2006–2012, with a positive overall
rate of change. From 2002–2005, energy productivity experienced a
downward trend, with a negative rate of change. The rate peaked at
8.75% in 1998, and then dropped to −1.98% in 2003 (NBSC, 2013).
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Second, different provinces have experienced significant differences
in energy productivity. For example, while Shanghai and Hainan
provinces experienced high energy productivity (1995–2012),
Shanghai's annual rate of change was 4.99% and Hainan's annual rate
of change was −0.32%. In contrast, while Shanxi and Xinjiang
provinces have low energy productivity, Shanxi's annual rate of change
was 5.64%, and Xinjiang's annual rate of change was 0.95% (NBSC,
2013). Therefore, regional heterogeneity is an important issue when
energy efficiency is studied.1

Many researchers have studied the evolution of energy productivity
in China over both time and geographies, using many perspectives to
study the factors influencing energy productivity (Dimitropoulos, 2007;
Wan et al., 2015; Wang and Wei, 2016). Energy productivity is the
ratio between economic output and energy input; however, energy
input is not the only driver of economic output. Changes in energy
productivity depend on the change in total factor productivity (TFP)
and factor substitution effects, i.e. the substitution effect between
energy and other factors and the substitution effect among different
energies (Boyd and Pang, 2000; Smyth et al., 2012).

Past studies have applied two approaches to study the effect of TFP
in promoting energy productivity. The first approach estimates the
optimal energy input to achieve a certain output under the total factor
framework. This allows researchers to study the improvement potential
associated with energy productivity (Lansink and Ondersteijn, 2006;
Honma and Hu, 2008; Chang and Hu, 2010). The second approach
introduces TFP information into the decomposition factors of energy
productivity (Wang, 2007; Wang and Wei, 2016), or constructs an
econometric model to analyze the promoting effect of TFP (Boyd and
Pang, 2000).

Two other types of studies have examined the influence of factor
substitution on energy productivity. The first type of study estimates
inter-factor substitution elasticity (Roy et al., 2006; Koetse et al., 2008;
Smyth et al., 2011; Wesseh et al., 2013; Kim and Heo, 2013; Adetutu,
2014; Haller and Hyland, 2014) and inter-fuel substitution elasticity
(Jones, 1996, 2014; Serletis et al., 2010, 2011; Smyth et al., 2012; Gao
et al., 2013; Steinbuks and Narayanan, 2015). This involves analyzing
how and how much the two forms of substitution elasticity promote
energy productivity. The second type of study directly studies the
influence of the inter-factor substitution effect and inter-fuel substitu-
tion effect on energy productivity (Wang, 2007).

To use both productivity information and factor substitution
information in a total factor framework, some scholars have orga-
nically combined TFP and factor substitution to study the factors
driving energy productivity. For example, Wang (2007, 2011)
decomposed changes in China's energy productivity into several
components, including changes in capital-energy ratio, labor-energy
ratio, output structure, technical efficiency change, and technical
progress change. These studies assumed constant returns to scale of
production technology. Lin and Du (2014) accounted for variable
returns to scale, and productivity information such as technical
progress and factor substitution information. They decomposed the
factors influencing energy intensity in China using data envelopment
analysis (DEA).

This paper expands the existing literature, while acknowledging
the reality of China's fluctuating energy productivity rate. This study
accounts for both TFP and random factors, and emphasizes the
driving factors using the concept of factor substitution. The paper
contributes to the field in the following ways. First, the study
decomposes the driving factors of energy productivity from the
perspective of the rate of change, instead of the absolute level.
This facilitates a dynamic analysis of energy productivity changes.

Second, the study theoretically decomposes the rates of change in
energy productivity into six different driving factors. This allows for
the consideration of random factors and the combination of both
TFP information and substitution effects. The study also empirically
analyzed real-world data from China, using stochastic frontier
analysis (SFA). This study helps explain the periodic fluctuation of
China's energy productivity rate, and the significant regional differ-
ences.

2. Methodology

There are few studies on the decomposition of energy productiv-
ity; however, there is extensive literature on CO2 emissions, CO2

intensity, and energy intensity changes. Index Decomposition
Analysis (IDA), Structural Decomposition Analysis (SDA), and
Production-theoretical Decomposition Analysis (PDA) (Zhou and
Ang, 2008; Wang et al., 2015, 2017a, 2017c; Ang et al., 2016) are
commonly used decomposition techniques. Wang et al. (In press)
thoroughly compared IDA, SDA and PDA. PDA generally provides a
better economic explanation for the decomposition of variables;
however, PDA is deployed using DEA, making it impossible to
differentiate random factors. Thus, this study drew on the idea of
PDA, but also applied SFA and insights from studies by Henderson
and Russell (2005), Wang (2011), Kuang and Peng (2012), and Lin
and Du (2014) to conduct the factorization, with some modifica-
tions.

Using the traditional calculation method, energy productivity is
defined as2:

EP Y E= /ij ij ij (1)

In Eq. (1), i and j represent year and regions, respectively; EP refers
to energy productivity; Y and E stand for GDP and energy consump-
tion. The expression X R∈ n

+ is introduced as the vector of multi-factor
inputs, and x X E= / refers to the factor inputs per unit of energy. This
results in the following stochastic frontier production function model:

EP f x t e= ( , )ij ij
v u−ij ij (2)

In Eq. (2), f (.) represents the deterministic frontier output of each
decision-making unit of production. This indicates the deterministic
maximum output of factor inputs per unit of energy under current
technical conditions. The factor t refers to time, representing the
technical standard; v stands for random difference item, meeting iid
N σ(0, )v

2 ; and u represents technical inefficiency, complying with iid
N σ(0, )u

2 .
Calculating the logarithm of the left and right side of Eq. (2), taking

the derivative of time t, and omitting the subscript ij for simplicity leads
to the following result:
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The left side of Eq. (3) is the growth rate of output per unit of
energy EP( ̇ ). The first term on the right side of the equation

1 Recently, Wang et al. (2017b) proposed an extended non-parametric frontier
approach to study economy-wide energy efficiency and productivity performances
accounting for sectoral heterogeneity. This provides a more global perspective to analyze
energy efficiency.

2 This study measures energy efficiency using energy productivity, rather than energy
intensity, for the following reasons. First, given a certain technology, using energy
productivity allows us to minimize energy input while maximizing outcomes. Some
literature has highlighted the exclusive meaning of the energy productivity index. For
example, Bean (2014) suggested that energy productivity “has a more positive connota-
tion [than energy intensity], and is more intuitive, is aligned with efficiency, and portrays
grander ambition.” Second, Energy productivity is similar to the often-used concepts of
labor productivity and capital productivity. When evaluating efficiency using a produc-
tion function, energy productivity is more accurate and closer to the category of outcomes
in economic terms. That is, the ratio of GDP to energy aligns with realistic processes
associated with inputs and outcomes (Wang, 2011; Atalla and Bean, 2016). Third, energy
productivity is the reciprocal of energy intensity; analyzing changes in energy productiv-
ity aligns with changes in energy intensity, allowing the transformation of analytical
results.
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