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A B S T R A C T

The potential for future cost reductions in wind power affects adoption and support policies. Prior analyses of
cost reductions give inconsistent results. The learning rate, or fractional cost reduction per doubling of
production, ranges from −3% to +33% depending on the study. This lack of consensus has, we believe,
contributed to high variability in forecasts of future costs of wind power. We find that learning rate can be very
sensitive to the starting and ending years of datasets and the geographical scope of the study. Based on a single
factor experience curve that accounts for capacity factor gains, wind quality decline, and exogenous shifts in
capital costs, we develop an improved model with reduced temporal variability. Using a global adoption model,
the wind-learning rate is between 7.7% and 11%, with a preferred estimate of 9.8%. Using global scenarios for
future wind deployment, this learning rate range implies that the cost of wind power will decline from 5.5 cents/
kWh in 2015 to 4.1–4.5 cents/kWh in 2030, lower than a number of other forecasts. If attained, wind power
may be the cheapest form of new electricity generation by 2030, suggesting that support and investment in wind
should be maintained or expanded.

1. Background

The declining costs of solar photovoltaics is a well-known phenom-
enon used in advocating for continued government support for the
technology. Past and future cost reductions for wind power, in contrast,
are under more contention. In 2015, wind produced 8 times as much
energy as solar at 60% of the cost, putting it close to price parity with
traditional technologies (EIA 2009; EIA 2016b; Wiser and Bolinger,
2015). Since the turn of the century, the wind industry has experienced
rapid growth and improving economic competitiveness (Wiser and
Bolinger, 2015). However, over this time, stagnating capital costs have
raised concerns that wind has matured and further investments will not
yield significant cost reductions (Bolinger and Wiser, 2011).

In this work we forecast wind power cost, developing empirical
models that reproduce historical cost trends. Forecasting cost reduc-
tions due to technological progress is usually done through experience
curves and learning rates. The experience curve is the observed power
law decline in a characteristic relative to the cumulated experience of
that characteristic's process (Wright, 1936; Arrow, 1962). In energy
economics, the single factor experience curve takes the form:

C C P P= ( / ) α
0 0

− (1)

where C is price per unit, P is the units produced, C0 and P0 are initial
cost and production values, and α is the learning coefficient. The

learning coefficient α is used to find the cost reduction for each
doubling of cumulative output, also called the learning rate (LR). LR
is specified by the equation:

LR = 1−2 α− (2)

Originally, the learning rate was used to identify cost reductions
from increasing experience in an airplane manufacturing plant
(Wright, 1936). Since this early work, the learning rate has been used
to explain cost reductions for a wide variety of technologies. While
generalizations of Eq. (1) that include two or more factors have been
developed, the single factor learning curve measures aggregate pro-
gress with fewer input parameters, e.g. research and development
investments. Despite its simplicity, the single factor experience curve
Eq. (1) fits empirical data surprisingly well. Nagy et al. (2013) showed
that R-squared exceeds 90% for a majority of 62 investigated technol-
ogies.

Recent reviews of the energy experience curve literature found large
variations in the range of reported learning rates (Lindman and
Söderholm, 2012; Rubin et al., 2015). The range of learning rate
estimates for wind power was particularly high, ranging from −3% to
33% (Rubin et al., 2015). A negative learning rate implies that wind
power is getting more expensive over time, while a 33% learning rate
denotes extremely rapid declines in wind electricity cost as more is
produced. Fig. 1 illustrates the combined results of two meta-analyses
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for wind learning rates and highlights the lack of consensus from 120
different analyses. This lack of consensus could convince some that the
learning rate approach is not suitable for wind power.

Summarizing prior work on retrospective modeling of wind costs, a
2000 report from the International Energy Agency reviewed the then-
current state of wind experience curves (e.g. Neij, 1999) and included
new estimates (IEA, 2000). A wide variety of wind learning rates are
reported, from 4% for Denmark (1982–1997), to 18% in the European
Union (1980–1995), to 32% in the US (1984–1994), though the
reasons for these stark differences were not explained. Using capital
cost ($/W) as the dependent variable, the Wind Technology Market
Report series has learning rate results for different time periods, e.g.
8.3% for 1982–2010 and 14.4% for 1982–2004 (Wiser and Bolinger,
2015). There are many additional studies for different regions and time
periods, e.g. (McDonald and Schrattenholzer, 2001; Ibenholt, 2002;
Junginger et al., 2009). There are also multi-factor learning curve
studies separating cost reductions into learning-by-doing and learning-
by-research (Miketa and Schrattenholzer, 2004; Klaassen et al., 2005;
Jamasb and Köhler, 2007; Söderholm and Sundqvist, 2007; Ek and
Söderholm, 2010). Learning-by-doing rates vary from 1% to 17%,
learning-by-research varies from 5% to 27%. Most prior analyses use
capital cost ($/kW) as the dependent variable. A notable exception is
(Neij et al., 2003), who found differences in learning rate using capital
cost ($/kW) versus Levelized Cost of Electricity (LCOE) ($/kWh)
measures.

Forecasting wind power costs draws from a number of approaches,
including experience curves, engineering models, expert elicitation and
scenario analysis. (Lantz et al., 2012) synthesized outcomes of 18
scenarios from different regions for wind cost reductions. Results
ranged from 0% to 40% reduction to 2030, with a 20–30% reduction
in cost representing the 20th to 80th percentiles of the scenarios. Part
of our goal is to compare our analytical results with governmental
expectations for reductions in wind cost. Focusing on the United States,
the primary articulation of governmental understanding of energy
systems is the Annual Energy Outlook (AEO) from the Energy
Information Administration (EIA, 2014). AEO forecasts are powered
the by National Energy Modeling System (NEMS), a techno-economic
model of the U.S. energy system with interacting modules describing
supply and demand for electricity, fossil and bio-fuels (EIA, 2016a).
The forecasting perspective for wind is summarized in this excerpt

from Assumptions to the AEO 2015: “Capital costs for wind technol-
ogies are assumed to increase in response to: (1) declining natural
resource quality … (2) increasing costs of upgrading existing local and
network …, and (3) market conditions, such as the increasing costs of
alternative land uses…” (EIA, 2015a). Results are consistent with this
perspective: AOE 2015 forecasts the LCOE of wind to be $73.6/MWh
in 2020, increasing to $75.1/MWh in 2040 (both in 2013 US$) (EIA,
2015b).

A different section of the U.S. DOE, the Wind and Water Power
Technologies Office, has sponsored the Wind Technology Market
Report series since 2008 (Wiser and Bolinger, 2015 and earlier) and
recently, a Wind Vision study (DOE, 2015). The Wind Vision study
considers technological progress, geographical distribution of wind
resources, and economic background factors to build a scenario of wind
adoption in the U.S. From the results, learning rates for onshore wind
can be inferred as 6% in the base case, with 0% and 11% for pessimistic
and optimistic cases respectively. In summary, the main energy model
informing the U.S. government forecasts small increases in wind cost
and the wind specialists within DOE forecast modest decreases. This
review of the U.S. situation underscores pervasive and important
questions for energy policy: What expectations do governments have
for technological progress? How were these expectations developed?
How do they affect energy policy decisions?

Despite a long history of research on the wind experience curve and
cost forecasting, there is still a need to better understand the
disagreement and improve the empirical basis for model choice. We
investigate three issues central to the wind experience curve: temporal
“stochasticity”, geographical boundaries and model structure.

Temporal “stochasticity” refers to variability in model results with
different start and end years for data-sets. The ideal start year of a
technological progress model for wind power depends on the particular
institutional context in the region of interest. While analysts strive to
gather as much data as possible, it is generally impractical to retro-
actively gather data for wind projects built decades in the past. The end
year of a data-set depends on when a study is done, typically a year or
two prior to the analysis.

As analysts generally have little control over the earlier start and
latest end-years of data sets, we treat these as variables and explore
how learning rate results changes as a function of different temporal
bounding within the available data.

Geographical boundaries refer to choices in regional aggregations
used in modeling. Many prior studies have analyzed wind power trends
at the national level, e.g. for China (Qiu and Anadon, 2012), the U.S.
(IEA, 2000) and even a national sub-region (California) (McDonald
and Schrattenholzer, 2001)). There have also been global studies (e.g.
Junginger et al., 2005, 2009), though data limitations have led to
national prices used as proxies for global values.

A national experience curve model would be appropriate if wind
technology were separately developed within each nation. While
portions of the cost of a wind farm are more local in nature, e.g.
construction, the wind industry is a highly globalized one, with multi-
national firms dominating production (Navigant, 2015). Some future
experience curve model, enabled by as yet unavailable data, might
succeed in resolving how different cost components fall according to
different scales of geographical activity. However, given current data
availability, the global nature of the wind industry suggests that a
global experience curve is the most appropriate choice.

A global experience curve has the following form:

∑ ∑C GP C GP GP C P P( ) = ( / ) = ( / )α j
o
j α

0 0
−

0
−

g g
(3)

where the global cumulative production of wind power, GP, can also be
expressed as a sum over cumulative production Pj in j nations, and αg is
a global learning rate. Ideally, C0 is global average cost, but lack of a
consistent global dataset implies that national values need to be used as
a proxy.
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Fig. 1. Wind Learning Rate Literature Summary. The count is the number of
occurrences of a learning rate in the wind literature. 120 learning rates estimated in 41
publications are reported, gathered from two meta-analyses (Lindman and Söderholm,
2012; Rubin et al., 2015). As explored further in this paper, this wide variation arises
from differences in start and end dates, which country's data are used, and what type of
model is used. The dates range from 1980 to 2010, with many focusing on the 1990–
2000 period. Countries studied include Denmark, Germany, Spain, UK, and the US, with
some aggregating to a global scale via some combination of these countries. The most
common model used is a single-factor experience curve focusing on capital cost and
installed capacity, but multifactor models, production, and levelized cost of electricity are
also represented.
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