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a b s t r a c t

In this paper, elastoplastic analyses of plane-stress and plane-strain structures are addressed. The tradi-
tional von Mises yield surface is assumed in the material constitutive model and its piecewise-linear
(PWL) approximation is derived. An associated flow rule is adopted and a consistent linear mixed
hardening rule is developed in the so called mixed formulation. The relevant mathematical programming
(MP) problem, which aims at the maximization of the linear combination of plastic multipliers, is
constructed. Restricted basis linear programming (RBLP) is used to solve the MP problem, while special
provisions are accounted for to obtain nonholonomic solutions. In order to reduce the required storage
space, the Revised Simplex method and a sifting technique are employed. The proposed algorithm is
validated and its performance is illustrated by solving some classical nonlinear problems.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Analysis of structures composed of elastoplastic materials is
still a growing area in the field of structural mechanics. The need
for realistic responses of structures to the increasing loads (such
as heavy live loads, crash loads, lateral quake/wind loads, and
explosions) or need for safety assessment of structures (commonly
required in limit load analysis and design procedures), have drawn
attention of several researchers toward this subject [1–3].

Using piecewise-linear (PWL) yield surfaces in combination
with optimization techniques has opened a new horizon of study
known as PWL elastoplasticity [4]. Mathematical programming
(MP) has been employed by several researchers in nonlinear analy-
sis of structures and has found to be a very robust and versatile
approach to solution of problems of this kind. MP based approaches
do not contain the difficulties of the iterative approaches such as
the implementation of cumbersome return algorithms, the enforc-
ing of convergence criteria, and so on. Satisfying the yield and
equilibrium equations at global scale, unconditional stability (that
appears in step-by-step solution schemes) and use of easily coded
optimization algorithms (frequently available in commercial soft-
ware) are encouraging features of such approaches that motivate

researches in this area. In the following, the history of such
approaches is cited briefly.

Mathematical linear programming has been considered for rigid-
plastic limit analysis (LA) of framed structures and its historical and
theoretical background has been deeply discussed and demon-
strated in many nonlinear analysis text books, e.g. see [5]. Maier
[6,7] proposed the use of quadratic programming (QP) in elastoplas-
tic analyses and derived a matrix formulation for framed structures
governed by PWL constitutive models [8]. The use of linear comple-
mentarity problem (LCP) solvers was also found to be efficient and a
restricted basis linear programming (RBLP) was proposed as an
alternative to QP [9]. Therefore LCP concept was extended to various
engineering problems such as dynamic analysis [10], shakedown
analysis [11], and softening frames [12,13]. Also some researchers
dealt with piecewise-linearization of yield surfaces, so as to be uti-
lized in optimization approaches as linear constraints [14–16].
Recently a modified version of RBLP has been proposed in the spirit
of framed structures, which automatically captures and handles any
local unloading and removes any need for sub-problem solution in
the cases of reaching yield surface corners [17,18]. This approach
has been successfully used in elastoplastic analysis of softening
frames and the proposed maximization criterion has shown an
excellent capability in capturing the exact response of structures.
This approach, which basically works in an incremental manner,
preserves the distinct features of the step-by-step method, namely
exactness and unconditional stability, while removes its disadvan-
tages addressed in [12].
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In spite of pervasive studies on MP approaches applied to skel-
etal structure analyses, which have made this topic a well-devel-
oped area, it has been rarely utilized in direct analysis of plane
stress/strain problems. Kaliszky and Lógó [19] presented a mixed
variational principle for plane-strain problems characterized by
bi-linear hardening materials. In this approach the load multiplier
is maximized using nonlinear MP solvers in the view of nonlinear
nature of constraints. Another development in MP approaches
toward 2D-stress/strain problems has appeared in [20], where tra-
ditional Mohr–Coulomb yield surface is piecewise-linearized and
used for safety assessment by load factor maximization. Utilizing
this approach, which is efficiently improved by the aid of sifting
and re-meshing techniques, the holonomic response of structures
and corresponding limit load are detected with a reasonable
accuracy.

The most recent contribution to direct elastoplastic analysis of
plane stress and plane strain structures by the aid of optimization
tools is the complementarity approach proposed by Tanga-
ramvong et al. [21]. This approach implements a mixed finite
element formulation, developed by Capsoni and Corradi for quad-
rilateral bilinear elements [22,23], in constructing an MP problem.
As for constraints, the von Mises or Tresca yield criteria are con-
sidered in their original nonlinear forms. The resulted MP is solved
using an industry-standard complementarity solver GAMS/PATH
with an interface for MATLAB environment. This approach belongs
to holonomic solution category and sufficiently small load steps
are needed to reduce the amount of errors appearing due to
possible local unloadings. In this approach a relatively large frac-
tion of the CPU time (27–82% in some studied structures) is spent
for load estimations beyond the limit load, i.e. infeasible load
steps.

In this paper, the RBLP is extended to 2D-Stress/Strain
problems following a similar approach discussed in [17,18]. To
this end, theoretical aspects of problem including: field approxi-
mation, piecewise-linearization of von Mises yield model in
2D-stress/strain, and development of linear mixed hardening
constitutive laws are presented in Section 2. Formulation of the
problem and its implementation in the MP problem are
explained in Section 3. In Section 4, the solution procedure of
the mathematical programming problem is discussed and finally,
in Section 5, some numerical examples are presented to demon-
strate the capabilities of the proposed algorithm and numerically
validate its results.

Bold-face, regular, and italic symbols are adopted herein for
matrices, vectors and scalars, respectively. Superscript T means
transpose, and dots stand for rates (i.e. derivative with respect to
ordering, not necessarily physical, time).

2. Theoretical formulation

2.1. Field approximations

It is well-known that in LA by popular FEM the computed safety
factor might severely be affected by locking, see e.g. [24]. Herein a
multi-field mixed discretization is adopted: the pairs of conjugate
variables are modeled and the conservation of the scalar product
for conjugate fields is imposed in a weak form. In such approaches,
the discrete problem is formulated in terms of generalized vari-
ables and using appropriate shape functions, which lets to rule
out the shear locking phenomena by relaxing the kinematic con-
straints that induce locking. The theoretical aspects of mixed for-
mulation is deeply studied in literature, see e.g. [25–27], and are
not brought here for the sake of brevity. In this study, quadrilateral
elements are considered and the displacement field, ue(n, g), within
the element e is approximated by quadratic isoparametric shape

functions, N, in the space of natural coordinates (n, g), and with ref-
erence to the nodal displacements Ue:

ueðn;gÞ ¼ NUe ð1Þ

Four Gauss points, g = 1–4, over each element are used for
numerical integration and the stress and strain fields are assumed
to vary linearly over the element. Herein the actual stress compo-
nents corresponding to the Gauss points are assumed as the
element generalized stress, �re, and bilinear shape functions, We

r,
which are referring to the Gauss points instead of element nodes,
are used to interpolate stresses, reðn;gÞ ¼ ½rxðn;gÞ; ryðn;gÞ;
sxyðn;gÞ�Te , over the element:

reðn;gÞ ¼ We
r �re ð2Þ

Note that the (3 � 12) stress shape function matrix, once computed
at the gth Gauss point, collects three zero blocks and an identity
matrix I3�3, located at the block corresponding to the considered
Gauss point, e.g. for g = 1:

We
r

��
g¼1 ¼ I3�3 03�3 03�3 03�3½ � ð3Þ

Also the strain field eeðn;gÞ ¼ ½ exðn;gÞ; eyðn;gÞ; cxyðn;gÞ �
T
e ,

within the element, is approximated by the shape functions We
e

and governed by the element generalized strain vector �ee as
follows:

eeðn;gÞ ¼ We
e�ee ð4Þ

In order to preserve the scalar product of conjugate quantities
in terms of actual model variables and the generalized ones, the
strain field shape function over the element domain X is selected
as follows:

We
e ¼ We

r

Z
X

WeT

r We
rdX

� ��1

ð5Þ

Also this shape function (3 � 12) matrix, once computed at the
gth Gauss point, collects three zero blocks and a scaled identity
matrix. The scale factor is (tJg)�1 wherein t is the element thickness
and Jg is the Jacobian matrix determinant, calculated at the Gauss
point g. For instance, at the first Gauss point (g = 1) the strain shape
function matrix becomes:

We
e

��
g¼1 ¼

1
tJg¼1

I3�3 03�3 03�3 03�3

h i
ð6Þ

By weighting the strain definition relation, the consistency
matrix Ce for linear kinematics is determined as:

Ce ¼
Z

X
WeT

e rNdX ð7Þ

wherein, r is the well-known symmetric gradient operator, gener-
ating the local strain field from the displacement field. The consis-
tency matrix Ce, the nodal displacements Ue and the nodal forces
fe can be related to the generalized stresses and strains by the fol-
lowing relations:

�ee ¼ CeUe

f e ¼ CT
e
�re

ð8Þ

Accordingly, the element stiffness matrix reads:

Ke ¼ CT
e DeCe ð9Þ

wherein the generalized material stiffness matrix De is evaluated in
terms of material constitutive stiffness matrix De and strain shape
functions through the following integral:

De ¼
Z

X
WeT

e DeW
e
edX ð10Þ
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