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a b s t r a c t

Many biological systems and artificial structures are ramified, and present a high geometric complexity.
In this work, we propose a space-averaged model of branched systems for conservation laws. From a
one-dimensional description of the system, we show that the space-averaged problem is also one-
dimensional, represented by characteristic curves, defined as streamlines of the space-averaged branch
directions. The geometric complexity is then captured firstly by the characteristic curves, and secondly
by an additional forcing term in the equations. This model is then applied to mass balance in a pipe
network and momentum balance in a tree under wind loading.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Branched systems are ubiquitous in nature and man-made
structures. In biological systems, ramification is a mean for increas-
ing exchange surfaces at a given mass; this is commonly observed
in blood circulation, pulmonary system [1], and plants like trees
and bushes [2], to list a few. In these various systems, an accurate
modeling of fundamental conservation laws is of crucial
importance, be it for medical purposes, ecological applications or
predictions of mechanical failure.

Over the past decades, numerous studies helped uncover the
flow kinematics in the blood system, for instance for targeted drug
delivery [3], or in lungs for finding geometries that maximize
ventilation in a limited time [4,5] and to study the behavior of
liquid plugs [6,7]. In plants, various studies have been designed
to understand the static and dynamic response to external flows
[8–10]. The modeling complexity of such systems comes from
the multiple ramifications and branching points. In these branched
systems, robust models exist for individual segments, but
branched systems are not easily modeled and often require heavy
computations. A key issue is to find a continuous way for modeling
these geometries.

A typical example is that of trees submitted to external flows. A
continuous representation of a tree as a tapered beam was
proposed by McMahon for analyzing the mechanical stability of a
tree under its own weight [11]. This model captures efficiently

some key geometric features of tree-like structures and allow for
computing accurately the wind-induced loads on an isolated plant
[10,12]. However, this continuous approach does not account for
the changes in branch orientation, and the tree effect on the flow
cannot be modeled inside the tree crown. To overcome this issue,
many models are based on fractal models for trees [13–15]. Such
models rely on costly computations and a large number of param-
eters. Moreover, despite the variety of existing models, there is a
lack of a general formulation of conservation laws in branched
systems.

In this paper, we present a new model for space-averaged
branching (SAB) in conservation laws. The purpose of this work
is to provide a continuous formulation of conservation laws in
branched systems, represented by a small number of parameters
and applicable to a large variety of problems, in particular for solv-
ing full fluid–structure computations on branched systems
through a porous medium approach. More specifically, we expect
that the proposed approach will help in modeling complex struc-
tures involving large number of branching, avoiding the fine
description of each and every segment. The present SAB model is
inspired from homogenization techniques and porous media
approach. We obtain an equivalent problem where a branched sys-
tem is represented by independent characteristic curves, on which
specific conservation equations are solved. These characteristic
curves correspond to streamlines of the average branch direction,
as sketched in Fig. 1. The SAB model is derived in Section 2. We
present then two applications of the model, first on a case study
of flow rate computation in a simple pipe network in Section 3,
and then on the problem of trees submitted to an external flow
in Section 4. Finally, a general discussion and conclusion is given
in Section 5.

http://dx.doi.org/10.1016/j.compstruc.2014.09.003
0045-7949/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: Aix-Marseille Université, CNRS, IUSTI UMR 7343,
13453 Marseille, France.

E-mail address: diego.lopez@univ-amu.fr (D. Lopez).

Computers and Structures 146 (2015) 12–19

Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate/compstruc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruc.2014.09.003&domain=pdf
http://dx.doi.org/10.1016/j.compstruc.2014.09.003
mailto:diego.lopez@univ-amu.fr
http://dx.doi.org/10.1016/j.compstruc.2014.09.003
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc


2. Space-averaged branching model

2.1. Definitions and problem equations

We consider a branched system where the segments between
two branching points are oriented and described by the corre-
sponding tangent vector t (Fig. 1a). The segments are slender, so
that a segment length is much larger than its transverse dimen-
sion. The resulting description is thus one-dimensional along the
segments. Under these assumptions, a general formulation of the
conservation of a vectorial quantity Q along the system is

dQ
dx
þ GðxÞ ¼ 0;

X
Q� ¼

X
Qþ; ð1Þ

where G is a forcing term, x the curvilinear coordinate, and we use
superscript � (resp. þ) to characterize a segment oriented towards
(resp. away from) the branching point, according to the system ori-
entation given by the tangent vector t (Fig. 2). The first relation is
the conservation of Q along a segment, and the second one gives
a relation at the nodes of the structure. Such conservation equations
are ubiquitous in branched systems, and their complexity arises
from the discontinuities introduced by branching nodes. In the
general case, Eq. (1) is a vectorial equation, but can be decomposed
into a set of scalar equations by projection on a fixed frame. In the
following, we derive the SAB model considering a scalar problem,
dQ=dxþ GðxÞ ¼ 0.

Whereas the initial branched system has no volume (1D
description), it is necessary to introduce its finite volume for aver-
aging purposes (see Fig. 2a). In order to obtain space-averaged
quantities, we introduce a representative volume X and denote Xs

the volume occupied by the branched system included in X, as
sketched in Fig. 2a. We define the volume fraction u ¼ Xs=X. The
representative volume X must be large compared to the typical
diameter of the branched system’s segments [16]. We use a stan-
dard space average operator over the branched system, noted h�is,

h�is ¼
1
Xs

Z
Xs

�dX; ð2Þ

for a quantity Q defined in the system. This formalism is typically
used in porous media analysis, where Xs stands for the volume
occupied by a solid and X�Xs is occupied by a fluid [17,18].

2.2. Volume equation derivation

For any quantity QðxÞ, where x is the curvilinear coordinate
along the segment, we introduce in the volume Xs a continuously
differentiable function q corresponding to Q per unit section, so
that in a cross section normal to t,

q ¼ qðxÞ ¼ QðxÞ
AðxÞ ; ð3Þ

where AðxÞ is the local cross-section. This definition yields some
singularities at the branching points and at the borders of the aver-
aging volume. Due to the high slenderness of the segments, these
singularities are easily overcome without loss of generality; these
technical points are discussed in A.

We consider the sketch of Fig. 2b for obtaining volume
equations. We denote Q in (resp. Q out) the sum of Q where the seg-
ments go into X (resp. out of X) with respect to t. According to the
previous notations and slenderness hypothesis, we can write for
segment I in Fig. 2b

Qout
I � Q in

I ¼
I
@Xs I

Q
A

t � nXs dS ¼
I
@Xs I

qt � nXs dS; ð4Þ

where @Xs I is the border of segment I. Since q is continuously
differentiable in Xs, we can apply the divergence theorem. We
can then introduce the space-average operator as defined in Eq.
(2), and we use a special property for the volume average of the
spatial divergence, noted r,

uhr � qtis ¼ r � uhqtisð Þ þ u
Xs

Z
@Xs

qt � ndS; ð5Þ

where @Xs the interface between X and Xs, and n the normal to the
interface oriented towards Xs [16]. As a result, the sum over each
independent segment (here noted I and II) gives

Qout � Q in ¼ Xs

u
r � uhqtisð Þ: ð6Þ

We consider now the conservation equations given in Eq. (1),
which give, for segment I (or II) of Fig. 2b,

Qout
I � Q in

I ¼ �
Z outI

inI

Gdx ¼ �
Z

Xs I

g dX: ð7Þ

The same analysis can be done on segment II using the conservation
of Q at a branching point, leading in the general case to

Qout � Q in ¼ �
Z out

in
Gdx; ð8ÞFig. 2. (a) Space averaging domain and (b) example for the averaging method and

corresponding notations.

Fig. 1. Space-averaged branching model: (a) ramified system with oriented branches (t), (b) volume averaged branch direction ts , and (c) characteristic curves C equivalent to
the branched system in SAB model.
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