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a b s t r a c t

In this paper, a solid finite element formulation applied to the analysis of functionally graded materials
(FGMs) under finite elastoplastic deformation with mixed hardening is presented.

The main novelty of this paper is the use of gradually variable material coefficients in finite elastoplas-
tic strain regime.

The numerical simulations are performed with the same constitutive models but with different varia-
tions of the material coefficients. Full integration and high order tetrahedral elements are used. Results
show that high order elements and mesh refinement avoids general locking problems. Finally, the differ-
ences (regarding final results) between the homogeneous and the FG cases are depicted.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The aim of this study is to analyze, via solid finite elements, the
behavior of functionally graded (FG) elastoplastic materials under
finite deformations and strains. These materials have many engi-
neering applications. At the automotive industry level, one can cite
the sheet-metal forming processes, in which some automobile
components acquire the desired shape via plastic deformation
([1–3]). Functionally graded materials (FGMs) are special compos-
ites in which the composition and, thus, the mechanical properties
vary gradually (smooth and continuously) over the volume. This
special variation avoids the material mismatch, which may cause
delamination failures, common in laminated composites. The main
applications of these advanced composites are in thermal environ-
ments, such as high-speed aircrafts, nuclear reactors and chemical
power plants. Besides, highly deformable materials are very com-
mon nowadays, such as metals, which can present large displace-
ments, and rubber-like materials, which can withstand large
strains. In order to predict the structural behavior of engineering
materials, and to reduce costs and time during the design process,
scientists and engineers have been using the Finite Element
Method (FEM). In this study, the element adopted is the isopara-
metric solid tetrahedral finite element of any-order (see, for

instance, [4,5]). Regarding the numerical results, mesh refinement
and full numerical integration are performed in order to obtain an
accurate and reliable solution.

The equilibrium analysis of elastoplastic materials under finite
deformations is not a simple task. To analyze flexible structural
components under large displacements, the geometrically nonlin-
ear analysis is imperative. In addition, to describe the material
behavior in the finite elastoplastic strain regime, a general frame-
work has been recently developed. In this framework, called hyper-
elastoplascity, the finite elastoplastic deformations are described
by means of a multiplicative gradient decomposition ([6–10]). In
general, for elastoplastic materials under finite strains, the additive
decomposition of the strain tensor, called Green-Naghdi decompo-
sition [11], is not valid (see the work of [12] for further details). In
this regime, the multiplicative decomposition, called Kröner-Lee
decomposition [13,14], is more suitable and well-accepted. Some
concepts from the small strain elastoplasticity can be extended
to the finite strain regime, such as yield criterion, plastic flow,
hardening, consistency condition and return algorithm.

According to [15], FGMs have great potential in many engi-
neering sectors, such as aerospace, automobile and defense indus-
tries, as well as electronics and biomedics. Concerning FG
elastoplastic materials, some works present in the scientific liter-
ature may be cited. Akis and Eraslan [16] have presented plane
strain analytical solutions of rotating FG hollow shafts. In [17],
spherical pressure vessels composed of a FG elastoplastic material
are investigated analytically. A finite element analysis of circular
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plates made of FG elastoplastic materials under low-velocity
impact is performed in [18]. Rotating disks composed of FG elas-
toplastic materials are analytically and numerically analyzed in
[19]. However, most of (if not all) the related works are restricted
to small strain theory. Moreover there is no evidence of conver-
gence analysis regarding mesh refinement in all consulted works
related to the subject and, according to the research done by the
present authors on the scientific literature, there are no published
studies regarding finite element analysis of FG hyperelastoplastic
materials. Therefore, another aim of this work is to fulfill the lack
of studies related to the numerical analysis of FGMs under finite
elastoplastic strains.

This paper is organized in five sections. The exact kinematics
and its numerical approximation are described in section two. In
the third section, the constitutive framework, the adopted models,
the FG laws and the equilibrium principle are given. Fourth section
describes some aspects of the incremental procedure performed in
order to achieve force equilibrium and plastic consistency. In the
fifth section, the numerical examples used to validate the method-
ology, as well as the discussion of results, are provided. Finally, the
main conclusions are given in the sixth section.

2. Kinematics

By kinematics one understands the relation among positions (or
displacements) and the strain measure, including its elastic and
plastic parts. In this section, the exact kinematics of hyperelasto-
plasticity and the adopted finite element approximation are
described.

2.1. Elastoplastic decomposition

In this study, finite elastoplastic strains are considered. So, the
decomposition of the deformation gradient (or change of configu-
ration function) into its elastic and plastic parts is performed here
by means of the Kröner-Lee decomposition:

F ¼ FeFp ð1Þ

where F is the deformation gradient; and the subscripts ()e and ()p

denote, respectively, its elastic and the plastic parts. Moreover, it
is assumed the existence of an intermediate configuration, which
is stress-free and locally defined. From expression (1), one can
write:

J ¼ detðFÞ ¼ JeJp ð2Þ

E ¼ 1
2
ðFT F� IÞ ¼ FT

pEeFp þ Ep ð3Þ

where J is the Jacobian; E is the Green–Lagrange strain tensor; and I
is the identity matrix.

2.2. Tetrahedral finite element

In the present study, the positional version of FEM is used (see,
for instance, [4,5,20–22]). In this case, both initial and current posi-
tions, represented here by x and y, are mapped from a non-dimen-
sional space (n):

x ¼ Xk/kðnÞ or xi ¼ ðxiÞk/kðnmÞ ð4Þ
y ¼ Yk/kðnÞ or yi ¼ ðyiÞ

k/kðnmÞ ð5Þ

where Xk and Yk denote, in this order, the three initial and final
coordinates of node k; and /k is the shape function associated with
node k. The deformation gradient (1) is multiplicatively decom-
posed into two auxiliary gradients:

Table 1
The expressions describing the plastic model.

Internal dissipation inequality:

d ¼ ðMe � vÞ : Dp �
@wp

@v

� �
� v
�
�

@wp

@j

� �
� j
�

P 0 ð18Þ

Plastic spatial velocity gradient:

Lp ¼ Dp þWp ð19Þ
Plastic strain rate tensor:

Dp ¼ F�T
p

� �
Ep

�
F�1

p

� �
¼ symðLpÞ ð20Þ

Plastic spin tensor:

Wp ¼ antðLpÞ ð21Þ
Objective Jaumann rate of the intermediate backstress:

v
�
¼ v
�
�Wpvþ vWp ð22Þ

Three-dimensional von-Mises yield criterion:

/ ¼ /ðMe � v;jÞ ¼ kdevðMe � vÞk �
ffiffiffi
2
3

r
rjðjÞ 6 0 ð23Þ

Associative plastic flow rule:

Dp ¼ k
�

RP ¼ k
� @/
@Me

¼ k
� devðMe � vÞ
kdevðMe � vÞk ð24Þ

Swift isotropic hardening law:

rj ¼ Y0 � ðe0 þ jÞn ð25Þ

Isotropic hardening parameter:

j
�
¼ k
�

rj ¼
ffiffiffi
2
3

r
kDpk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
ðDp : DpÞ

r
¼ k
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
ðRP : RPÞ

r
¼ k
�

ffiffiffi
2
3

r
ð26Þ

Nonlinear Armstrong-Frederick hardening law:

v
�
¼ k
�

Rv ¼ cDp � k
�

bv ð27Þ

Evolution of the initial backstress tensor:

X
�
¼ k
�

RX ¼ F�1
p v
�

F�T
p � symð2C�1

p Ep

�
XÞ ð28Þ

Null plastic spin tensor:

Wp ¼ O) Fp

�
¼ k
�

RPFP ; v
�
¼ v
�

ð29Þ

Consistency condition:

k
�

/
�
¼ 0 ð30Þ

Plastic multiplier:

k
�
¼ � @/=@E
½ð@/=@FpÞ : ðRPFpÞ þ ð@/=@XÞ : RX þ ð@/=@jÞrj�

: E
�

ð31Þ
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