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a b s t r a c t

This work presents a semi-analytical sensitivity analysis approach for geometric nonlinear shape optimi-
zation. A secant stiffness matrix is used in the nonlinear solution procedure. Conditions that an accurate
derivative of the matrix should satisfy are determined. Following these conditions, a correction term for
the finite differencing approximation is constructed. Due to the asymmetry of the secant stiffness matrix,
the correction term is expressed in the product spaces of two sets of zero eigenvectors. The analytical for-
mulas of these vectors are also presented, which increases the computational efficiency. Numerical
examples highlight the ability of the technique to effectively eliminate sensitivity analysis errors.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Nonparametric shape optimization takes the nodal coordinates
of finite element models as design variables, which provides a
much larger design space than parameterized shape optimization.
However, the large number of design variables requires methods
for highly efficient sensitivity evaluations when a gradient based
algorithm is used to solve the optimization problem.

The most common methods to obtain sensitivities are the global
finite difference method, the variational method and the discrete
method [1–3]. The implementation of the global finite difference
method is straightforward. However, the method suffers from
errors when the perturbation size is either too large or too small,
and, more importantly, it suffers from large computational costs
owing to repeated, time-consuming structural analyses. The varia-
tional method first differentiates the continuum equation of a struc-
tural system, and thereafter discretizes the formula, while the
differentiations occur directly on the discretized governing equa-
tions of finite element systems for the discrete method. Due to
the convenience of a straightforward implementation within finite
element codes, the discrete method is considered in this study.

Because the analytical derivatives of discrete quantities such as
the stiffness matrix, mass matrix, and load vector, are difficult to
obtain, semi-analytical methods, where analytical derivatives are

approximated by finite differencing, have been widely employed.
The significant accuracy problem related to semi-analytical
approaches has been well studied [4–6]. The problem is recognized
to be associated with rigid body rotations of the finite elements. A
variety of techniques have been presented to eliminate this error,
among which exact semi-analytical sensitivity [7,8] and refined
semi-analytical analysis [9,10] are able to eliminate the error in
linear problems. The exact semi-analytical technique adds a cor-
rection term to the finite differencing approximation so that a set
of rigid-body conditions are satisfied. The correction term is
expressed in the product spaces of a set of zero eigenvectors. The
refined semi-analytical technique focuses on correcting the
approximation error of the derivatives of internal force vectors,
and the correction term is a linear combination of the set of zero
eigenvectors. The refined semi-analytical approach has also been
extended to geometric nonlinear cases.

In this study, an accurate geometric nonlinear sensitivity anal-
ysis method using a secant stiffness matrix is investigated. Firstly,
in Section 2, the tangent stiffness matrix and, in particular, the
secant stiffness matrix utilized in the proposed nonlinear analysis
procedure are introduced. The discrete semi-analytical sensitivity
analysis in conjunction with the adjoint approach is described in
Section 3. In Section 4, the exact semi-analytical sensitivity analy-
sis method is extended to the nonlinear case, where the form of the
correction term is presented. The sensitivity results of both reac-
tion force and stress responses for a cantilever beam problem are
presented and discussed in Section 5. Finally the conclusions are
presented in Section 6.
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2. Secant and tangent stiffness matrices for nonlinear finite
element analysis

2.1. Nonlinear analysis procedure with secant and tangent stiffness
matrices

The Newton–Raphson method is often used to solve nonlinear
problems iteratively [11]. In the initial step (for i = 0), a linear
system of equations involving the tangent stiffness matrix KT is
solved:

KT 0;Upð Þ � Uf ;0

Up

" #
¼ Ff

Fp;0

" #
ð1Þ

where Up and Ff represent the prescribed displacement vector and
the given external force vector respectively, Uf is the unknown dis-
placements and Fp represents the unknown reaction force vector
that corresponds to Up. The incremental reaction forces and
displacements of the next iteration are obtained by solving the
following linear problem:

KT Uf ;i;Up
� �

� DUf ;iþ1

0

" #
¼ Rf ;i

DFp;iþ1

" #
ð2Þ

Both the unknown displacements and the reaction forces are then
updated by

Uf ;iþ1 ¼ Uf ;i þ DUf ;iþ1 ð3Þ
Fp;iþ1 ¼ Fp;i þ DFp;iþ1 ð4Þ

The procedure terminates when the residual force vector is suffi-
ciently small.

In Eq. (2), Rf is the residual force vector, and it equals to the
difference between external force vector and configuration-
dependent internal force vector. Two methods are normally used
in calculating the internal force vector. One method assembles
the internal forces of the individual finite elements. The other
method utilizes the so-called secant stiffness matrix. Fig. 1 depicts
the force–displacement curve of a general nonlinear problem. The
secant stiffness matrix KS(U) is the slope of the secant line connect-
ing points on the equilibrium curve with the initial point. The
internal force vector

Fint is evaluated through the following equation [12,13]:

Fint ¼ KSðUÞ � U ð5Þ

The use of the secant stiffness matrix has been investigated by
various authors, and new solution strategies have been developed
for geometric nonlinear problems [14–17]. The secant stiffness
matrix is also employed in the analysis limit behavior of structures
[16], and the estimation of limit and bifurcation load factors
[18,19]. Therefore, the secant stiffness matrix is used in the present
study in the calculation of the internal forces due to its potential
applications in nonlinear structural analysis problems.

From the standpoint of the secant stiffness matrix, the govern-
ing equation of a nonlinear system is

KSðUÞ �
Uf

Up

" #
¼ Ff

Fp

" #
ð6Þ

and the nonlinear residual force vector R is thus expressed as

Rf

Rp

" #
¼ KSðUÞ �

Uf

Up

" #
� Ff

Fp

" #
ð7Þ

2.2. Secant stiffness matrix based on the Green–Lagrange strain

The expression of the secant stiffness matrix has been derived
for several types of finite elements by Pedersen [20,21]. The com-
ponents of the nonlinear Green–Lagrange strain tensor eij in Carte-
sian coordinates are defined by

eij ¼
1
2
ðui;j þ uj;iÞ þ

1
2

uk;i � uk;j
� �

ð8Þ

where variables u represent a displacement field and i, j and k rep-
resent the three directions x, y, and z, respectively, in three-dimen-
sional (3D) space. The Einstein summation convention applies for
the index k. In matrix form, this is given as

e ¼ BLUþ 1
2

UTBNU ð9Þ

where BL is the strain–displacement matrix in the linear problem,
and BN is a symmetric matrix. With a variation of U, we obtain

de ¼ BL þ UTBN
� �

dU ð10Þ

The stress measure conjugate to the Green–Lagrange finite
strain tensor is the second Piola–Kirchhoff stress tensor s. The rela-
tionship between them is

s ¼ De ð11Þ

where D is the material matrix. In addition, the general equilibrium
equation due to the principle of virtual work over an element vol-
ume isZ

deTsdV ¼ dU � F ð12Þ

Inserting Eqs. (9)–(11) into Eq. (12), the equilibrium equation is
derived asZ

BL þ UTBN
� �T

D BL þ 1
2

UTBN
� �

dV � U ¼ F ð13Þ

This results in the secant stiffness matrix:

KSðUÞ ¼
Z

BL þ UTBN
� �T

D BL þ 1
2

UTBN
� �

dV ð14Þ

Note that unlike the tangent stiffness matrix, the secant stiff-
ness matrix described here is asymmetric. Closed form formulas
of the secant stiffness matrix for several types of finite elements,
including the plane triangular element, the axisymmetric element
with triangular cross-section and the 3D 4-node tetrahedral ele-
ment, are found in [20,21].

3. Semi-analytical sensitivity analysis using the secant stiffness
matrix

Because the number of design variables is usually much larger
than the number of system responses in nonparametric shape opti-
mization, the adjoint sensitivity analysis approach is preferable for
efficiency.

equilibrium curve

Disp.U0

F

KS(U)

KT(U)

Fig. 1. Secant KS and tangent KT stiffness matrices at an equilibrium point.
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