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a b s t r a c t

The exact methods (the algebraic method and Nelson’s method) to calculate eigensensitivities need a
matrix decomposition for each eigensensitivity, and therefore are time-consuming. The modal method
may be the most efficient method for eigensensitivity analysis, but suffers from modal truncation error.
A method is presented by exactly expressing the modal truncation error as a sum of available modes and
system matrices. The proposed method maintains original space without having to use the state-space
form. It is shown that the proposed method yields good trade-off between accuracy and computational
complexity in terms of the theoretical analysis and numerical studies.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Structural design is a process to enhance the performance of a
mechanical structure or system by changing its design parameters.
Sensitivity analysis deals with the calculations of the rate of perfor-
mance measure from changes in the design parameters of engi-
neering structures. A significant body of research has been
devoted to the calculation and application of sensitivity analysis
in engineering designs (see, e.g., van Keulen et al. [1], Choi and
Kim [2] or Haug et al. [3]). Computational methods of sensitivity
analysis have received much attention over the past decades, par-
ticularly those related to the eigenvalue problem. It is well-known
that frequencies and mode shapes (eigensolutions, modes or eigen-
pairs) of a structure represent the dynamic characteristics of the
structure. Therefore, eigensensitivity analysis plays an integral role
in many design methodologies of engineering problems, including
structural modal reanalysis [4], dynamic modification [5], optimi-
zation [6], reliability [7], model updating [8,9] and structural
health monitoring [10]. A significant body of the computation
and application of eigensensitivity can be seen in Adelman and
Haftka [11,12] or Chen [13]. Although calculating eigenvalue deriv-
ative is straightforward, determining eigenvector sensitivity raises
several challenges, due in part to the singularity of the coefficient
matrix of the linear equation of the eigenvector derivatives (in this
paper, we call it the singularity problem).

Fox and Kapoor [14] developed a direct algebraic method to
obtain the sensitivities of mode shapes. The algebraic method
obtains the sensitivities of mode shapes by assembling the deriva-
tives of eigenproblems and the additional constraints obtained
from the derivative of normalization into a linear system of alge-
braic equations. Lee and Jung [15] derived an algebraic method,
which assembles a linear system of algebraic equations with sym-
metric coefficient matrices such that this approach can calculate
the sensitivities of mode shapes with little computational cost.
Later, Lee et al. [16] further extended their algebraic method to
symmetric viscously damped systems. Choi et al. [17], Guedria
et al. [18], Chouchane et al. [19] and Xu et al. [20] further devel-
oped some algebraic methods to obtain the eigensensitivities of
asymmetric viscously damped systems. Recently, Li et al. [21] sug-
gested a new normalization for the left eigenvectors, from which
the sensitivities of the left and right eigenvectors can be deter-
mined separately and independently for asymmetric viscously
damped systems with distinct and repeated eigenvalues. Li et al.
[22,23] studied the eigensensitivities of generalized nonviscous
damped eigensystems using the algebraic method. Recently, Li
et al. [24] developed an algebraic method to calculate the first-
and second-order derivatives of eigensolutions of the undamped,
damped and nonlinear systems. The algebraic method is a compact
and exact method. The algebraic method only requires the mode of
interest, and is very efficient to calculate the sensitivity of a few
modes. However, the algebraic method needs a matrix decomposi-
tion (e.g., LDLT decomposition) of the coefficient matrix of the
linear system of algebraic equations for each eigensolution sensi-
tivity, which cause the matrix decomposition problem, and therefore
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the algebraic method is time-consuming when considering the
derivatives of many modes.

Nelson [25] developed an efficient method to obtain the deriv-
atives of mode shapes of undamped systems. The main idea of Nel-
son’s method is to express the derivative of each mode shape as a
linear combination of a particular solution and a homogeneous
solution of the singularity of the coefficient matrix. The particular
solution is suggested to be determined by identifying the element
of the corresponding mode shape with the largest absolute value
and constraining its derivative to zero. It is well known that each
mode shape always satisfies the linear equation of the eigenvector
derivatives with singular coefficient matrix and can be therefore
considered as a homogeneous solution of its derivative. The arbi-
trary constraining the derivative of the largest absolute value can
be corrected by the calculation of the coefficient of the homoge-
neous solution. Friswell [26] extended Nelson’s method to find
the second and higher order derivatives of modes of undamped
systems. Later, Friswell and Adhikari [27] extended Nelson’s
method to viscously damped systems. Guedria et al. [28] studied
the second order derivatives of modes of viscously damped sys-
tems using Nelson’s method. Adhikari and Friswell [29] extended
Nelson’s method to nonviscously damped systems. Recently, Li
et al. [30] developed a unified eigensensitivity method to obtain
the sensitivities of eigensolutions of the undamped, viscously, non-
viscously damped and nonlinear systems of both distinct and
repeated eigenvalues. Although Nelson’s method mentioned above
gives exact results and only needs the mode shapes of interest, Nel-
son’s method has the matrix decomposition problem similar to the
algebraic method since the particular solution needs to be obtained
in terms of matrix decomposition and must be resolved for differ-
ent mode shapes. Therefore, Nelson’s method is time-consuming if
many modes are considered to eigensensitivity analysis.

Murthy and Haftka [31] surveyed the methods for eigensensi-
tivity analysis of the systems with generalized non-Hermitian
matrices. Jankovic [32] gave the analytical solutions for the first
and higher order derivatives of eigensolutions of generalized non-
linear eigenproblems. Other methods have been developed for the
calculation of the sensitivity of mode shape, including the iterative
method [33–35], QR-based method [36,37], Davidson-based
method [38], the combination method [39–41], the perturbation
method [42,43] and the substructuring method [44–46].

Fox and Kapoor [14] also suggested a modal method, which
evaluates the derivative of each mode shape as a superposition
of all the mode shapes. This modal method can be used to obtain
the eigensensitivities of viscously damped systems using the
state-space formulation. Adhikari [47,48] and Adhikari and Fri-
swell [49] developed some original-space modal methods to calcu-
late the sensitivities of eigensolutions of viscously damped systems
without using state-space formulations. It should be mentioned
that the modal method calculates the eigenvector sensitivities by
modal superposition and therefore does not have the matrix
decomposition problem. The modal method is widely applied in
engineering (see, e.g. in the direct and inverse eigenproblems
[8,50–53]). However, in order to guarantee the exact derivative
of each mode shape, the modal method needs a superposition of
all the mode shapes, which is a significant computational task
especially for multiple degree-of-freedom (DOF) engineering prob-
lems. Often only the lower order frequencies and associated mode
shapes are required for engineering analysis. It implies that
approximated sensitivity may be evaluated depending on the
number of modal basis vectors.

The corrections to the problem of modal truncation error have
been studied by several authors. Wang [54] approximates the con-
tribution of higher (unavailable) modes to the derivatives of mode
shapes of undamped systems in terms of a residual-static term
solved from the given equation for the mode shape derivative.

Liu et al. [55] developed an accurate modal method for undamped
systems by combining the mode superposition of lower (available)
modes and a convergent series of the influence of higher modes in
terms of system matrices and lower modes. Some authors [56–58]
have also studied the derivatives of complex mode shapes of vis-
cously damped systems in terms of state-space formulation. These
state-space equations based approaches need heavy computational
effort since the size of system matrices of state-space equations is
double the size of original-space.

The aim of this study is to present an original-space correction
modal method to correct the derivatives of complex mode shapes
of viscously damped systems. Since the correction modal method
only uses original-space eigenproblems (the state-space formula-
tion is avoided), it is efficient. Firstly, based on the Neumann
expansion theorem, an explicit expression of modal truncation
error can be expressed as a sum of lower modes and system
matrices. It will be shown that the modal truncation error of eigen-
sensitivity can be exactly expressed as a convergent series expan-
sion, which can be evaluated by a simple iterative procedure. Then,
an original-space correction modal method is presented by
expressing the eigenvector sensitivities as the explicit expression
of the contribution of the higher modes and the modal superposi-
tion of the lower modes. Finally, two case studies will be used to
illustrate the engineering application, accuracy and efficiency of
the presented method. It will be shown that the proposed method
yields good trade-off between the computational accuracy and the
computational complexity in terms of the theoretical analysis and
numerical studies.

2. Common methods for sensitivity analysis of viscously
damped eigensystems

The formulation for modal analysis of viscously damped linear
systems can be given by

k2
i Mþ kiCþ K

� �
ui ¼ 0 8i ¼ 1;2; . . . ;2N ð1Þ

where M, C and K 2 RN�N are, respectively, the mass, damping and
stiffness matrices (assume system matrices are symmetric and
differentiable with respect to design parameter, p); ki is the ith
eigenvalue and ui is the ith complex mode shape (eigenvector).
Here we assume that the eigenvalues, which appear in complex
conjugate pairs for underdamped systems, are distinct. The damped
system cannot be simultaneously decoupled by modal analysis
unless it also possesses a full set of classical normal modes (the
classical normal modes are undamped mode shapes that are nor-
malized by using the mass normalization). The condition of vis-
cously damped systems to possess classical normal modes, is
known as the classically damped system. In 1877, Rayleigh [59]
showed that a viscous damping is proportionally damping if the
damping matrix is a linear combination of inertia and stiffness
matrices. This damping is routinely assumed in engineering appli-
cations. Later, Caughey and O’Kelly [60] gave some more restrictive
conditions which make viscously damped systems possess normal
modes as well. However, there is, of course, no reason why these
mathematical conditions must be satisfied. Generally speaking,
classical damping means that energy dissipation is almost uni-
formly distributed throughout the mechanical system. In practical,
mechanical systems with two or more parts with significantly dif-
ferent levels of energy dissipation are encountered frequently in
engineering designs. To this end, the non-classically damped sys-
tem is considered in this study, i.e., the concern of this study is
when these mathematical conditions are not met (the most general
case in engineering applications).

Often the following normalization is adapted to remove the
arbitrariness of eigenvectors.
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