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a b s t r a c t

A new method is proposed to identify locations and severities of structural damages based on the power
spectral density sensitivity analysis. Firstly, the structural responses and power spectral density under
stationary and random excitations are calculated using pseudo excitation method. Then, the sensitivities
of power spectral density with respect to the structural damage parameters are obtained. Finally, the
finite element model updating method is adopted to identify the structural damages from the calculated
and the simulated measured power spectral density. Two numerical examples demonstrate the satisfac-
tory identification results obtained from the present method.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Efficient methods to detect and quantify structural damage
have drawn wide attention from various engineering fields. The
state-of-the-art in control and health monitoring in civil engineer-
ing structures has been reviewed by Housner et al. [1]. Zou et al. [2]
offers an extensive review of the progress on structural condition
monitoring and damage identification for composite structures.
Doebling et al. [3] provided a comprehensive summary on the
damage detection methods by examining changes in the dynamic
characteristics of the structure. Recently, dos Santos et al. [4] sur-
veyed damage identification methods which consider the numeri-
cal data and the experimental data of the undamaged and damaged
structure dynamic characteristics. Fan and Qiao [5] reviewed and
compared damage identification methods for beam- or plate-type
structures based on different damage identification algorithms.

Damage detection usually requires a mathematical model on
the structure in conjunction with experimental model parameters
of the structure. The identification approaches are mainly based on
the change in the natural frequencies [6,7], mode shapes [8–10],
measured modal flexibility [11–13], frequency response function
[14,15] or the combination of these methods [16–18]. Limitations
of the frequency-domain damage detection methods lie in: (1) nat-
ural frequencies of structure are not sensitive to local damages; (2)

mode shapes of higher orders cannot be easily measured and the
accuracy is low due to limited measurement points.

Among all of the structural damage detection techniques,
approaches based on dynamic responses have been a hot research
topic during the past 20 years. There are a lot of non-destructive
methods in the literatures for structural damage detection in time
domain. Time histories of vibration response of the structure were
used to identify damage in smart structures [19]. Lu and Law [20]
proposed a structural damage identification approach based on
response sensitivity analysis in time domain. Ding et al. [21] devel-
oped a damage identification procedure based on energy variations
of responses decomposed using wavelet packet transform. Damage
identification in time domain takes advantage of plenty measure
data and can yield satisfactory results; however, the same excita-
tion force for the intact and damaged structures to obtain the
structural dynamic responses is required.

Taking advantage of the plenty of response data in frequency
domain, Liberatore and Carman [22] proposed an approach for
damage identification by analyzing the power spectral density of
the structure. The relative changes between input and output ener-
gies in specific bandwidths are regarded as the occurrence of dam-
age. And the damage is located by a damage location function,
summing all the mode shapes which are weighted by the percent-
age change caused by the damage. Bayissa and Haritos [23] used
spectral strain energy (SSE) analysis to identify structural damage
in the context of a non-model-based damage identification
approach. The SSE is derived from moment–curvature response
in which all the modal parameters are needed. Fang and Perera

http://dx.doi.org/10.1016/j.compstruc.2014.10.011
0045-7949/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +86 20 84113290; fax: +86 20 84113689.
E-mail address: lvzhr@mail.sysu.edu.cn (Z.R. Lu).

Computers and Structures 146 (2015) 176–184

Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate/compstruc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruc.2014.10.011&domain=pdf
http://dx.doi.org/10.1016/j.compstruc.2014.10.011
mailto:lvzhr@mail.sysu.edu.cn
http://dx.doi.org/10.1016/j.compstruc.2014.10.011
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc


[24] utilized power mode shapes for early damage detection in lin-
ear structures. Two damage indices based on the concept of power
mode shapes were proposed in the localization of structural dam-
age, and the statistical properties of random signals and band-
width-localized energy concept were used in the formulation.
Kanazawa and Hirata [25] presented a new cross-spectral analysis
procedure for the parametric estimation. More recently, Wolfstein-
er and Breuer [26] developed a technique to assess fatigue of
vibrating rail vehicle under non-Gaussian random excitations.

For many damage identification methods having been devel-
oped, certainty loads [20,21] are required in order to compare
the dynamic responses of real structure and that of the simulated
model; therefore, this would be impractical for large-scale civil
engineering structures. Damage identification methods based on
structural responses under random excitations such as earth-
quakes or ambient white noise excitations will provide a possible
way to solve the problem.

In this paper, an approach for structural damage identification
based on the response power spectral density sensitivity analysis
is proposed. The dynamic response of structures and sensitivity
of power spectral density with respect to the damage parameters
are obtained using stationary, random excitation with pseudo-
excitation method (PEM) which is high-efficiency for calculating
power spectral density of structural dynamic responses [27–29].
In the process of damage identification, the damage parameters
are obtained iteratively using the finite element model updating
method [30–32]. Two numerical examples, a plane frame structure
and a 12-story shear building structure illustrate the correctness of
the proposed method.

2. Methodology

2.1. PEM for random vibration analysis

The (PEM) transforms a stationary random vibration analysis
into a series of harmonic response analyses and turns a non-sta-
tionary random vibration analysis into a series of transient direct
dynamic analyses in the time domain, and so it reduces computa-
tion efforts considerably while retaining the theoretical accuracy.

2.1.1. Structure subjected to a single-point stationary random
excitation

When a linear system is subjected to a single-point stationary
random excitation f(t) with auto-power spectrum Sff(x), the
auto-power spectrum Sxx(x) of the response is expressed as

Sxx ¼ Hj j2Sff ; ð1Þ

where H is the frequency response function.
It is easy to see if the excitation eixt is multiplied by a constantffiffiffiffiffi

Sff

p
to construct a pseudo excitation, i.e. ~f ðtÞ ¼

ffiffiffiffiffi
Sff

p
eixt , the

response of the structure should be multiplied by the same
constant

~x ¼
ffiffiffiffiffi
Sff

q
Heixt: ð2Þ

Premultiplication conjugation of ~x for Eq. (2), one has

~x�~x ¼ ~xj j2 ¼ Hj j2Sff ¼ Sxx; ð3Þ

where the superscript ‘*’ denotes conjugation.

2.1.2. Structure subjected to multi-point coherent stationary random
excitations

When structures are subjected to multi-point coherent station-
ary random excitations, such as earthquake excitations, random
wind loads, these can be regarded as the generalized problem of

single-point excitation. It can be easily solved following the
method below. The stationary response of linear system is
expressed as

Sxx ¼ H�Sff H
T ; ð4Þ

where Sff is the spectral matrix for known excitation force, H is the
transfer function matrix, Sxx is the response spectral matrix to be
solved, the superscripts ‘*’ and ‘T’ denote conjugation and transpose
of a matrix, respectively.

The spectral matrix Sff can be decomposed in the Cholesky
scheme as

Sff ¼ L�DLT ¼
Xm

k¼1

Skka�kaT
k ; ð5Þ

in which L is the lower triangular matrix, D is the diagonal element.
ak is the kth column of L, and Skk is the kth diagonal element of D.

Assuming that the excitations are fully coherent for the simplic-
ity, m in Eq. (5) is taken as one, and Eq. (5) could be rewritten as

Sff ¼ a�aT S0: ð6Þ

where S0 is a constant obtained from Eq. (5).
Once the pseudo harmonic excitation is constructed as

~f ¼ aeixt
ffiffiffiffiffi
S0

p
: ð7Þ

The harmonic response of the system can be expressed as

x ¼ beixt; ð8Þ

where b ¼ Ha
ffiffiffiffiffi
S0
p

. The response spectral matrix Sxx can be written
as

Sxx ¼ x�xT ¼ b�bT
: ð9Þ

2.2. Damage identification based on power spectral density sensitivity
analysis

Equation of motion of forced vibration for multiple degrees-of-
freedom system is written as

M€xþ C _xþ Kx ¼ FðtÞ; ð10Þ

where M, K and C are system mass, stiffness and damping matrices,
respectively. Rayleigh damping theory is adopted, i.e.

C ¼ a1M þ a2K ; ð11Þ

where a1 and a2 are two constants, and they are determined from
two different modal frequencies xi, xj and modal damping ratios

ni, nj, with the expression of a1 ¼
2xjxi xjni�xinjð Þ

x2
j
�x2

i
, a2 ¼

2 xjnj�xinið Þ
x2

j
�x2

i
.

2.3. Sensitivity of power spectral density with respect to damage
parameters

Assume the structure is subjected to a stationary random exci-
tation and it can be decomposed as shown in Eq. (5). Applying the
pseudo excitation ~f ¼ aeixt

ffiffiffiffiffi
S0
p

to the structure, Eq. (10) can be
expressed as

M€xþ C _xþ Kx ¼ ~f : ð12Þ

The displacement, velocity and acceleration responses of the struc-
tures are written as

x ¼ Haeixt
ffiffiffiffiffi
S0

p
; ð13Þ

_x ¼ ixHaeixt
ffiffiffiffiffi
S0

p
; ð14Þ

€x ¼ �x2Haeixt
ffiffiffiffiffi
S0

p
: ð15Þ
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