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a b s t r a c t

This paper proposes a new non-probabilistic interval uncertain optimization methodology for structures.
The uncertain design problem is often formulated as a double-loop optimization. Interval arithmetic is
introduced to directly evaluate the bounds of interval functions and eliminate the inner loop optimiza-
tion. A high-order Taylor inclusion function is proposed to compress the overestimation of interval arith-
metic. A Chebyshev surrogate model is proposed to approximate the high-order coefficients of the
inclusion function. A metaheuristic optimization algorithm is combined with the mathematical program-
ming to search the global optimum. Two numerical examples are used to demonstrate the effectiveness
of this method.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Design optimization of structures has experienced considerable
development over the past two decades with a wide range of engi-
neering applications. However, the majority of these works are
focused on the investigation of the deterministic problems. In
engineering, there are many uncertain factors inevitably related
to material properties, geometry dimensions, loads and tolerance
in the whole life cycle of design, manufacturing, service and aging
of the structure [1], due to inherent uncertainties of real-world sys-
tems. As a result, the performance of a structure, such as the
robustness and reliability, is always subject to some degree of
variations due to various uncertainties. An extreme value of the
optimization problem, obtained by traditional (deterministic)
approaches, can be simply considered as a maximum attainable
value from the point of view of its practical realization. However,
the design under the deterministic assumption may not satisfy
the expected goal or even lies in the unfeasible region. Hence, there
is an increasing demand to consider uncertainties quantitatively in
the optimization of structures, to enhance structural safety and
avoid failure in extreme working conditions due to the
unavoidable variability. To incorporate uncertainties in the design
optimization, the deterministic design problem should be suitably
modified and enhanced.

The reliability-based optimization (RBO) [2] and the robust
design optimization (RDO) [3,4] are two major methods to imple-
ment the uncertainty optimization. Du et al. [5] also proposed an
integrated framework for design optimization problems under
uncertainty, which took both the robustness of the design objective
function and the probability of the constraints into account. In tra-
ditional RDO and RBO methods, uncertain parameters are mostly
treated as random variables. The probability distributions are pre-
defined based on the complete information. However, it is time-
consuming and even impossible to achieve complete information
to determine precise probability distributions, due to the complex-
ity of engineering problems [6,7]. Furthermore, Ben-Haim and Eli-
shakoff [6] have shown that even small variations deviating from
real values may cause relatively large errors to the probability dis-
tributions in the feasible region. Hence, the probabilistic methods
may experience difficulty for real-world problems. Recently, some
non-probabilistic methods have emerged as beneficial supple-
ments to the conventional probabilistic methods.

In engineering, there are a large number of design problems that
have uncertain-but-bounded parameters. The uncertainties
induced by the bounded parameters can be treated with convex
models or interval models [6,8–10]. In particular, the interval model
has attracted much attention recently in the optimization of struc-
tures [11–14]. In interval models, the interval number is used to
measure the uncertainty, because the representation of intervals
only requires bounds of uncertain parameters. The determination
of lower and upper bounds of an interval is relatively easier, com-
pared to a precise probability distribution. The corresponding
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bounds of an interval function are the minimal and maximal
responses of the uncertain objective and constraints. Interval
method has been successfully applied to a range of engineering
design problems with uncertain-but-bounded parameters [15,16].
Interval models often involve a nested double loop optimization
procedure, such as [17,18,19], which are commonly time-consum-
ing, because each function evaluation in the outer optimization is
implemented iteratively by an inner optimization.

To reduce the computational cost of the nested optimization,
one option is to use the first-order Taylor series expansion to
approximate the maximum and minimum values in the inner loop
[18], instead of using the optimization algorithm. Chakraborty
et al. [20] applied the matrix perturbation theory via a first order
Taylor series expansion to obtain a conservative dynamic response
of interval functions. Chen et al. [21] used the first-order Taylor
series expansion to analyse robust response of interval vibration
control systems. In fact, the linearization model optimization is
actually a type of degenerative nested optimization, in which the
inner optimization is replaced by the first-order Taylor series
expansion. However, the linearization model with respect to the
first-order Taylor approximation has a lower numerical accuracy,
which may lead to a solution located in local unfeasible regions.

In this study, the interval arithmetic [22,23], which defines the
fundamental arithmetic operators, is introduced into the inner
loop to evaluate the maximum and minimum values of the interval
functions, as the interval arithmetic can easily obtain the bounds of
a design function with interval variables. However, it is
well-known that the range of an interval function is mostly
overestimated in the numerical implementation, due to the inher-
ent wrapping effect of the interval arithmetic [22,24].

In the area of structure uncertain analysis, Muhanna et al.
[25,26] proposed an element-by-element technique to control
the overestimation, which gave the structure response a sharp
enclosure. The hybrid method that combines the optimization
and interval arithmetic was proposed in [27–29] for the analysis
of frequency of structures, to control the overestimation of the
response function more effectively. The Taylor inclusion function
method [30,31] were proposed for more general problems, which
employed the high-order Taylor series to approximate the original
function as a polynomial function, and then the interval arithmetic
was used to calculate the range of the polynomial function. How-
ever, the coefficients, a set of high-order derivatives, in the polyno-
mial function is hard to be obtained even for some functions with
explicit expressions. To this end, the Chebyshev series [32] are
used to approximate these coefficients of the Taylor inclusion
(polynomial) function, so as to develop a Chebyshev surrogate
model. This model can be constructed by evaluating function val-
ues at specific interpolation points rather than the high-order
derivatives, to improve computational efficiency [33,34]. After
obtaining the Chebyshev surrogate model for the Taylor inclusion
function, the interval arithmetic can be used to directly calculate
the bounds of the inclusion function in the inner loop, without
requiring the inner loop optimization. There have been several sur-
rogate models developed for the design problems of structures, e.g.
the linear model [35], Kriging model [36], artificial neural network
[37,38] and support vector machine [39]. However, the aim of the
Chebyshev surrogate model in this study is only to approximate
the high-order coefficients in the Taylor inclusion function, and
other surrogate models are hard to transform to the format of Tay-
lor inclusion functions. The approximated inclusion function will
be used to compress the overestimation in the interval arithmetic.

The outer loop optimization mainly aims to update the mean
values of the design variables. To search the global optimum in
the outer loop optimization, the metaheuristic optimization meth-
ods [40–47] can be employed. In this paper, the Multi-Island
Genetic Algorithm (MIGA) [48,49] will be combined with the

Sequential Quadratic Programming (SQP) [50] in a sequential man-
ner to improve the efficiency, which is easily to implement. That is,
the MIGA will be used to find the optimal solution as the initial
point of the SQP.

2. Design optimization under interval uncertainties

This section will propose a new uncertainty optimization
model, in which both the design variables and structural parame-
ters are considered as interval numbers. In engineering problems,
there are many cases that the design variables are also uncertain
variables, besides other uncertain parameters. For example, the
stiffness in vehicle suspensions can be both the design variable
and the uncertain parameters due to the material property varia-
tions. The cross section areas of a truss structure can be design
variables, and at the same time uncertain parameters due to man-
ufacturing tolerance. When both design variables and other param-
eters are under uncertainty, the proposed uncertainty optimization
model will be more suitable for practical problems. As mentioned
above, the information of interval variables can be easily obtained
compared to the precise probabilistic distributions of random
variables. Specially, the uncertainty of both the objective and
constraints induced by interval numbers are calculated, in a way
similar to the concept of traditional RDO and RBO, respectively.

A general deterministic optimization model for the design of
structures is given by

min
x

f ðx; yÞ

s:t: giðx; yÞ 6 0; i ¼ 1;2; . . . ;n

xl
6 x 6 xu

8><
>: ð1Þ

The above mathematical model is used to minimize the objective f
subject to constraints gi. x 2 Rk is the vector including deterministic
design variables, and y 2 Rq is the vector of consisting of determin-
istic parameters. To describe uncertainties in the design, interval
numbers are introduced to express the variations induced by the
uncertainty. Any interval ½x� can be expressed as

½x� ¼ ½x; �x� ¼ xc þ ½Dx� ð2Þ

where x and �x denotes the lower and upper bounds of ½x� , respec-
tively, xc ¼ ð�xþ xÞ=2 denotes the midpoint of ½x�, and ½Dx� denotes
the symmetric interval of ½x�, which is defined by

½Dx� ¼ ½�wð½x�Þ;wð½x�Þ�; where wð½x�Þ ¼ ð�x� xÞ=2 ð3Þ

where the width wð½x�Þ reflects the uncertain degree of ½x�.
Considering the uncertainties, the deterministic optimization

model (1) can be re-defined as follows:

min
½x�

f ð½x�; ½y�Þ

s:t: gið½x�; ½y�Þ 6 0; i ¼ 1;2; . . . ;n
xl
6 ½x� 6 xu

8>><
>>: ð4Þ

Here, the ranges for the interval parameters ½y� will in general be
pre-determined. Since the width of an interval design variable ½x�
is also pre-given as n, any interval design variable can be expressed
as

½x� ¼ xc þ ½�n; n� ð5Þ

The responses of the objective and constraints would also be inter-
val numbers, denoted by ½f � and ½g�, respectively, because the design
variables and parameters are interval vectors.

The above minimization problem is to minimize both the aver-
age value and the width of the uncertain objective function, to
ensure the ‘‘robustness’’ of the design. The minimization of the
width will lead to the decrease of the variance of the objective
function, to make the uncertain objective function insensitive to

186 J. Wu et al. / Computers and Structures 146 (2015) 185–196



Download English Version:

https://daneshyari.com/en/article/510601

Download Persian Version:

https://daneshyari.com/article/510601

Daneshyari.com

https://daneshyari.com/en/article/510601
https://daneshyari.com/article/510601
https://daneshyari.com

