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A B S T R A C T

Techno-economic variables for advanced biofuels produced from lignocellulosic biomass have been scrutinized
and combined with a newly developed transparent model for simulating the competitiveness between
conventional and advanced biofuels for road transport in the medium to long term in Germany. The influence
of learning effects and feedstock cost developments has been highlighted, including also gaseous fuels.
Thorough sensitivity analyses were undertaken. Previously reported cost assumptions for advanced biofuels
were found to have been too optimistic. The most cost-competitive biofuels for most of the time period
remained conventional biodiesel and bioethanol, but the costs of these options and biomethane and Synthetic
Natural Gas (bio-SNG) converged in the medium term and thus other factors will play a decisive role for market
developments of biofuels. Feedstock cost uncertainties for the future remain a challenge for long-term planning,
and low-cost short-rotation coppice may change the picture more than any other parameter. Of the advanced
biofuels, bio-SNG was found significantly more cost-competitive and resource efficient than Fischer-Tropsch-
diesel and lignocellulose-based ethanol, but still requiring a dedicated long-term policy. The results and the
large sensitivities of biofuel competitiveness stress the need for more data transparency and for thorough
sensitivity analyses of the results in similar system studies.

1. Introduction

Global concern for climate change calls for alternatives in the
transport sector, which accounts for 14% of global anthropogenic
(IPCC, 2014) and 20% of German GHG-emissions (BMWi, 2013).
Germany aims to reduce transport emissions by 6% until 2020
(BImSchG, 2014), with subsequent further emission reductions re-
quired in order to meet overall climate targets (UNFCCC, 2015). Aside
from demand reduction and modal shift, biofuels and a switch to
electric mobility are the main renewable solutions for road transport,
with biofuels fitting comparably well into the current vehicle fleet.

The presently dominant biofuels in the German road transport
sector are biodiesel from oil bearing crops and bioethanol from sugar
beet or grains. These conventional biofuels compete with food produc-
tion (see e.g. Foley et al., 2011) and have a limited GHG-abatement
even when excluding indirect land use effects (Cherubini et al., 2009).
Advanced biofuels derived from biomass with a high share of cellulose,
hemicellulose and/or lignocellulose potentially avoid these problems
and are thus often proposed as a solution, with promising future cost
estimates reported (Chum et al., 2011, p.282; Eisentraut et al., 2011,

p.32; IEA, 2008, p.335). However, to date advanced biofuels have not
yet become commercially available, and large-scale attempts have
failed (Hogan, 2011).

The capital investment and production costs of advanced biofuels
have been subject to a large range of estimates (Haarlemmer et al.,
2012). The future cost development is subject to the development of
feedstock costs and to learning effects, both being uncertain. At any
point in time, the biofuel options are also subject to competition
between each other to fulfill biofuel mandates. Yet - to our knowledge -
the effect of these uncertainties on cost developments and competi-
tiveness of biofuels have not been thoroughly assessed before.

There is a large number of future modelling studies including
biofuels, with a wide array of different scopes and results (Börjesson
et al., 2013). The models are often large and the focus often on whether
to use biomass in the power or transport sector (as Martinsen et al.
(2010) did for Germany) and thus the techno-economic details of the
different biofuels have not been central (Börjesson et al., 2013). Wit
et al. (2010) performed a modelling study including learning and
competition between biofuels for transport in Europe. However, the
model did not build the yearly development on prevalent capacities,
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thus missing out on path-dependencies, gaseous biofuels were excluded
and advanced liquid fuels were seemingly assumed to be lower cost
than conventional biofuels already from the beginning of the time-
period, indicating a need for further scrutiny of the data basis. Most
other models are optimisation models with perfect foresight, thus
losing information regarding learning effects and path dependencies,
which are of value to policy makers. Also, there is a lack of thorough
sensitivity assessments to results in energy systems modelling
(Hedenus et al., 2012). This is perhaps of particular importance in
the bioenergy sector, which is subject to influence from numerous
parameters.

To address the open points mentioned above, a sound data set has
been developed and used as a basis for a newly developed least-cost
myopic simulation model in order to answer the research question:
Which liquid or gaseous biofuel options from domestic biomass are
potentially most cost-competitive in Germany in the medium to long
term?

2. Methodology, scenarios and data

Three pathways of conventional biofuels (biomethane produced
from maize, bioethanol from sugar beet and biodiesel from rape seed)
and three pathways as advanced biofuel counterparts (Synthetic
Natural Gas (bio-SNG), bioethanol from lignocellulosic biomass
(Ligno-EtOH) and Biomass-to-Liquid (BtL)/Fischer-Tropsch (FT)-die-
sel, all produced from biomass with high lignocellulosic content) were
included in the simulation. All biofuels were assumed to be equivalent
at the end user stage (with some differences regarding transport and
storage costs).

Vehicle costs are neglected in this paper, as various and possibly
fuel type specific strategies for implementing biofuels can be foreseen
in a likely rapidly changing market (see e.g. Economist (2016)), which
highly affect vehicle usage rates and efficiencies and have large
consequences for the vehicle cost added to the fuel cost.

Germany has relatively much experience with the conventional
biofuel options biomethane, bioethanol and biodiesel, the data for
which are elaborated in Thrän et al. (2015). For advanced biofuel
options there is less experience, why a literature review was addition-
ally performed in order to come up with estimates for techno-economic
parameters. All costs used in the modelling were converted to €2010.

2.1. Model description

In order to model the competition between different technology
options, a simulation model has been developed. BENSIM (BioENergy
SImulation Model) is a myopic recursive dynamic bottom-up least-cost
simulation model with endogenous technological learning, seeking the
least-cost mix of biofuel production options on a yearly basis for
fulfilling a set demand. Through the recursive elements of learning
effects and previously built capacities, path dependencies can be
captured by the model.

The existing biofuel plant infrastructure in the region in focus (here
Germany) is the basis at the starting point of the modelling. For each
year of the simulation, BENSIM starts by removing the plants that have
reached the end of their life-time (capacities present at the beginning
are assumed to be decommissioned linearly over the life-time of the
plants). In the next step, the technology options are sorted in the orders
of total costs (TC; Eq. (1)) and in merit order after marginal costs (MC;
Eq. (2)). A given biofuel demand sets the limit for the production and is
also the basis for calculating a minimum market price (psys), defined by
the MC of the most expensive option in the merit order which is put
into production. If there are options which have TC lower than the psys,
capacity investments1 take place, beginning with the option with the

lowest TC.
This continues until the market price adjusts on a level below the

TC of still available options and the system reaches a (partial)
equilibrium. In order to account for e.g. regional differences, invest-
ment risk behaviour and market imperfections, options with TC within
10% of the least-cost alternative are treated equally with the least-cost
option, i.e. they are also invested in during the same round. There are
no capacity expansion constraints in relation to previously built
capacities.

After the investment phase, biofuel production takes place follow-
ing the merit order based on marginal costs of production, until the
hypothetical biofuel target is fulfilled (and/or until a given biomass
potential is exhausted). In the following year, the technology options
that experienced an expansion are subject to learning effects, reducing
the investment costs by the learning rate for each doubling of capacity.
The options which were not expanded experience “exogenous” learning
through a research and development mechanism, defined as one
learning rate unit in a specified number of years.

Eq. (1) shows the investment cost I j
t( ) [€ GJ fuel

−1 ] for technology j at

timepoint t as a relationship of the initial investment cost I j
(0) [€ GJ

cap fuel,
−1 converted from € MW cap fuel,

−1 ] with an assumed capacity factor C
f j, and an annuity factor with an assumed discount rate i over a set
time-span T, including a learning effect by a learning rate LRj with
increasing cumulative production capacity k j

t( ) divided by the initial

capacity k j
(0) (see Grubler (1998, p81ff) and IEA (2000)). This

relationship holds with the assumption that relative expansion in the
region in focus (Germany) is equal to the relative expansion globally. In
order to have a nonzero denominator, a virtual initial capacity k j

(0) for
options not presently at the market is set at 2 PJ in this paper, whereas
actual initial capacities are set to zero. As the starting capacity for these
options is relatively small, the capacities multiply relatively quickly in
case of investments and thus can experience substantial learning.2
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Eq. (2) shows the marginal cost MC j
t( ) [€ GJ fuel

−1 ] for technology j at
timepoint t as a sum of operation and maintenance costs and personnel
costs c om j

t
,

( ) , costs for main feedstock (p f
t( ) [€ t DM

−1 ] divided by feedstock

specific energy content ef [GJ t DM
−1 ] and conversion efficiency ηj

t( )),

secondary inputs p f
t
2

( ) [€ t−1], electricity (p el
t( ) [€ kWh−1] multiplied by

amount required, ṁel j, [kWh GJ−1]), process heat (p th
t( ) [€ kWh−1]

multiplied by amount required, ṁth j, ), logistic cost c log j
t

,
( ) , a credit for by-

products p bp j
t

,
( ) and a cost of GHG-emissions (the price of emissions p

CO
t( )

2 multiplied by amount emitted ṁCO j,2 ).
Eq. (3) shows the constitution of total costs as a sum of investment

and marginal costs.

1 Investments take place in units of 1 PJcap a−1 (ca 35MWcap at 8000 full-load hours),

(footnote continued)
an assumption which enables a competition on equal terms. Typical plant sizes for the
included options range between 7-250 MW (Ponitka et al., 2016) and thus the model
units do not correspond to whole plants, but in some cases more and in some less.
However, as the additional demand to be fulfilled surpasses at least 8 PJ a−1, options with
typically large plants may reach realistic capacity increments, especially when taking the
development over time into account. Similarly, for options with typically small plant sizes
the model unit corresponds to several plants.

2 The set biofuel target influences the amount of expansion possible, thus limiting the
possible cost reductions through technological learning. If the final biofuel target of 400
PJ is met by one of these technologies, about 9 virtual capacity doublings are possible,
translating into a ca. 60% investment cost reduction with a 10% learning rate, which may
be seen as a rather high reduction but in line with some estimates for future costs (see
e.g. Haarlemmer et al. (2012) and Hamelinck et al. (2005)).
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