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A B S T R A C T

Clean energy technologies that cost more than fossil fuel technologies require support through research and
development (R &D). Learning-by-doing relates historical cost decreases to accumulation of experience. A
learning investment is the amount of subsidy that is required to reach cost parity between a new technology and
a conventional technology. We use learning investments to compare the relative impacts of two stylized types of
R &D. We define curve-following R &D to be R&D that lowers costs by producing knowledge that would have
otherwise been gained through learning-by-doing. We define curve-shifting R &D to be R &D that lowers costs
by producing innovations that would not have occurred through learning-by-doing. We show that if an equal
investment in curve-following or curve-shifting R&D would produce the same reduction in cost, the curve-
shifting R &D would be more effective at reducing the learning investment needed to make the technology
competitive. The relative benefit of curve-shifting over curve-following R &D is greater with a high starting cost
and low learning rate. Our analysis suggests that, other things equal, investments in curve-shifting R &D have
large benefits relative to curve-following R &D. In setting research policy, governments should consider the
greater benefits of cost reductions brought about by transformational rather than incremental change.

1. Introduction

Innovation in clean energy technology shapes the future of our
energy system and provides solutions for deep decarbonization
(Edenhofer et al., 2014; IEA, 2015). Deployment of these technologies
at a scale that can significantly reduce greenhouse gas emissions
requires them to be cost competitive in energy systems that are
currently dominated by conventional fossil fuel technologies. New
clean energy technologies can compete with fossil fuel technologies if
there is an appropriate policy environment and costs are sufficiently
low (Yang et al., 2015).

Studies across many sectors and industries relate historically
observed decreases in the cost of a technology to key factors related
to diffusion, such as cumulative quantity or experience. In these
analyses, a learning rate (R) is used as a metric to express the
percentage reduction in the cost of a technology as a result of every
doubling of its cumulative quantity. Incremental additions of new
technologies achieve cost reduction more quickly than similar addi-
tions of mature technologies. However, new technologies have a higher
starting cost that impedes their further deployment. Learning-by-

doing, where cost reductions are achieved through increased experi-
ence, was originally observed in empirical studies in manufacturing
(Wright, 1936; Alchian, 1963; Arrow, 1971; Hirsch, 1952) where
learning curves (also known as experience curves) are used to estimate
the cost reduction as a function of experience gained from increased
cumulative quantity.

A very common functional representation of learning-by-doing is a
single-factor learning curve, where cost of a technology is a power law
of its cumulative quantity (Nagy et al., 2013). Fig. 1 demonstrates
empirical learning curves for several clean energy technologies, adopt-
ing a power law to represent the relationship between cost and
cumulative quantity. As a technology's quantity increases from the
starting quantity Q0 to the critical quantity Q*, its cost drops from the
starting value C0 to the same cost as the conventional energy
technology C (Nemet, 2009). We use data from this figure for
subsequent analysis of the impact of different types of R &D.

Although the simple relationship between cost and cumulative
quantity is useful to represent and project learning, it faces limitations
(Nordhaus, 2009). One key shortcoming is that this representation
does not distinguish among the various factors that may have
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contributed to learning. Some of these reductions in cost may be a
consequence of other factors, including economies of scale. Several
analyses have indicated that some of the reduction is due to true
learning (Lundvall and Johnson, 1994; Gaynor et al., 2005). Here, we
use the term learning-by-doing broadly to encompass the many sources
of cost reduction as cumulative quantity increases.

The area between the learning curve and cost of the conventional
technology represents the total subsidy necessary to reduce the cost of
new technology to that of the conventional technology. This “learning
investment” is required for any new technology with higher starting
cost to achieve cost parity with the conventional energy technology,
should all government support come in the form of deployment
incentives (Foxon, 2010). In practice, subsidies may be larger than
the required learning investment due to inefficient policy design.

Research and development (R &D) can potentially reduce the
learning investment in very different ways (Kahouli-Brahmi, 2008).
Some R&D could generate knowledge that would have been gained
through increased deployment. This type of R &D reduces the cost by
following a path along the same learning curve. Therefore, the effective
starting cost and quantity will be somewhere down the learning curve
from the original starting point. For example, research into incremen-
tal improvements in manufacturing processes might generate informa-
tion that would have been gained as deployment of the technology
increased. This resembles many R &D investments in corporate sector
where business entities try to maximize their profit by modification to
existing products or services. As a convention, we call this type of
incremental R &D ‘curve-following’ R&D. This kind of R &D is often,
though not exclusively, undertaken by the corporate sector. For
example, Gallagher describes improvements in photovoltaic (PV) wafer
efficiency and costs sought by private manufacturers in China
(Gallagher, 2014):

Early shortages of silicon also inspired Chinese firms to use it more
efficiently. One firm noted that it focused heavily on how to make
the wafer thinner so as to use less silicon. During a tour of one
manufacturing plant, I paused to watch a camera flash over each
finished wafer to determine its efficiency, and the cell efficiency of
most cells was about 16.5%, with approximately 10% of the wafers
higher than 17% efficiency. I murmured compliments, which were
immediately and forcefully rebuffed as my host declared that the
efficiency still wasn't good enough and the goal was to achieve at
least 20% efficiency within a few years.

Similarly, several manufacturing innovations have decreased solar
module costs and increased efficiency. They include adoption of

fluidized-bed reactors for silicon production, diamond wire saws,
stencil printing, and anti-reflective coatings, as well as increasing the
number of busbars within a cell (McCrone et al., 2016).

In contrast, R &D could also potentially produce transformational
knowledge, such as use of a different substrate for PV devices that
would not occur in the course of manufacturing scale up. This type of R
&D reduces the cost by shifting the learning curve to a lower level with
the same slope. Therefore, the new starting cost will be lower than the
original cost while the starting quantity remains the same. This
transformational learning results from fundamental R &D that aims
to transform manufacturing processes. It is often funded by govern-
ment entities, and undertaken by academics, government-sponsored
laboratories, and private industry. The U.S. Department of Energy, for
example, is funding research on PV technologies that are far from
commercialization, but whose development could have a large impact
on the costs and performance of solar energy systems. These include
hybrid PV-thermal solar energy systems, and advanced materials for
PV, including perovskites (Kim et al., 2015; Branz et al., 2015). As a
convention, we call this type of transformational R &D ‘curve-shifting’
R&D.

There are many reasons why the government and corporate sectors
underinvest in transformational R &D. Profit-maximizing firms under-
take R &D to maximize their expected returns: as such, they target
incremental improvements in existing processes to reduce costs or gain
a larger market share. Transformational R &D, in contrast, is often too
speculative for corporate actors, or requires a long time to produce
successful outcomes (Taylor, 2012). A recent survey of the U.S.
corporate sector found that private firms are overwhelmingly focused
on short-term returns in their energy innovation investments, with
two-thirds of those who measure economic impacts of their invest-
ments expecting to recoup expenditures in only two to three years (Diaz
Anadon et al., 2011). Additionally, knowledge generated from trans-
formational R &D may not be fully appropriable by private firms,
leading to underinvestment (Jaffe et al., 2005). For governments,
underinvestment in transformational R &D is instead related to
budgetary constraints and the lack of an entrepreneurial culture that
accepts risk and encourages competition (Diaz Anadon et al., 2011).

Some studies use a two-factor learning curve in order to account for
the role of R &D in reducing costs. Unfortunately, these models face
several limitations. Typical two-factor learning curves represent learn-
ing-by-researching as a function of R &D spending, which amplifies
learning-by-doing through a similar power law (Jamasb and Kohler,
2007; Barreto and Kypreos, 2004; Berglund and Söderholm, 2006).
However it is not clear what is a quantifiable measure of cumulative
research, or knowledge stock, in these models. Some models use the
cumulative R &D spending for a specific technology (Jamasb, 2007;
Söderholm and Klaassen, 2006; Barreto and Kypreos, 2004). However,
investment data are not easily accessible, especially for non-OECD
countries and the corporate sector. Another candidate is the number of
patents related to a specific technology. Patents, however, are an
imperfect measure of innovation (Johnstone et al., 2010). In any case,
finding reliable and robust data points remains a main challenge for
calibrating these models (Lohwasser and Madlener, 2013). Moreover,
two-factor learning models typically assume that R &D investment and
deployment are uncorrelated, which is unlikely (Söderholm and
Sundqvist, 2007).

Here, we compare the impacts of two stylized types of R &D, curve-
following and curve-shifting, in the context of a single-factor learning
curve. Curve-following R &D lowers costs by producing incremental
knowledge that would have otherwise been gained through learning-
by-doing, increasing effective cumulative quantity. Curve-shifting R &
D produces transformational innovations and improvements that
would not have occurred through learning-by-doing, reducing costs
by a fixed percentage. These curve-shifting R&D investments reduce
costs while preserving the original learning rate, R. We consider the
potential impact of these two types of R &D spending in reducing the

Fig. 1. Learning curves for clean and conventional energy technologies. The horizontal
axis represents cumulative quantity of electricity generation and the vertical axis
represents the unit cost of electricity generation. Both scales are logarithmic. Learning
rates (R) are shown in parentheses. Q0 indicates starting quantity and C0 is starting cost.
With this axis scaling, straight lines represent power laws (Eq. (1)). We use data from this
figure for subsequent analysis of the impact of different types of R &D (EIA, 2015, Wene,
2000; Rubin et al., 2015).
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