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We model the stochastic evolution of the probability density functions (PDFs) of Ibovespa
intraday returns over business days, in a functional time series framework. We find
evidence that the dynamic structure of the PDFs reduces to a vector process lying in a
two-dimensional space. Our main contributions are as follows. First, we provide further
insights into the finite-dimensional decomposition of the curve process: it is shown that its

evolution can be interpreted as a dynamic dispersion-symmetry shift. Second, we provide
an application to realized volatility forecasting, with a forecasting ability that is comparable
to those of HAR realized volatility models in the model confidence set framework.
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1. Introduction

The adequate specification of the distribution of fi-
nancial assets’ prices or returns is a particularly relevant
topic in the statistical modeling of financial data. A wide
range of models have been introduced in the literature
over recent decades, with the aim of accommodating the
stylized features of financial returns distributions. These
models include the ARCH and GARCH models introduced
by Bollerslev (1986) and Engle (1982), respectively. We
refer the reader to Mikosch, Kreil3, Davis, and Andersen
(2009) for a very comprehensive review. However, a crucial
difficulty that arises in this context is the fact that most
of the aforementioned models are designed to describe
the time-path dynamics of the returns (often driven by
a latent volatility process), which usually requires certain
restrictions to be imposed on the underlying distributions
— for instance, that they belong to a parametric family — in
order to make inference possible.

The present paper introduces a modeling approach that
seeks to capture a different type of information that may
potentially exist in the data, by relaxing the specification
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of the time-path dynamics while allowing for a greater
flexibility of the underlying conditional distributions. Thus,
rather than falling under the same framework as the afore-
mentioned models, our approach is more likely to comple-
ment them, and may enrich traders’ analysis toolkits. The
approach that we take here is distinct because our analysis
focuses on the dynamics of the returns’ underlying con-
ditional distributions, seeing the PDFs of intraday returns
as a sequence of random variables that take values on a
function space; that is, as a latent functional time series.
Following Bathia, Yao, and Ziegelmann (2010), we adopt
an essentially model-free environment in which the un-
derlying density process evolves autonomously, giving rise
to the observable returns process according to a specific
conjugation property — see Eq. (1). Our aim in so doing is
to establish an alternative setting for the modeling, esti-
mation and forecasting of asset returns’ probability density
functions.

From a methodological point of view, our approach
lies at the intersection of functional data analysis (FDA)
with functional time series and nonparametric statistics.
In recent years, the theory of estimation and inference
when the observed data pertain to function spaces has re-
ceived an increasing amount of attention from researchers
from a wide spectrum of academic disciplines; see for
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instance the collection edited by Dabo-Niang and Fer-
raty (2008) for a discussion of recent developments and
many applications. Unfortunately this blossom is not yet
as widespread in the fields of economics and finance — not
to say merely incipient. For example, Benko, Hardle, and
Kneip (2009) provide an application to implied volatility
estimation, and the cornerstone monograph by Ramsay
and Silverman (1998) presents a thorough treatment of
the topic. From a theoretical point of view, functional
data can be viewed as realizations of function-valued ran-
dom variables. Formal treatments of random elements that
take values in the Hilbert and Banach spaces are provided
by Bosq (2000), Ledoux and Talagrand (1991) and Vakha-
nia, Tarieladze, and Chobanyan (1987). A more general the-
ory considers random elements in metric spaces; see the
classic texts by Billingsley (1999), Parthasarathy (2005)
and van der Vaart and Wellner (1996). An approach that
blends theory and applications is provided by Ferraty
and Vieu (2006). Interestingly, most of the literature on
FDA has dealt with the case in which the functional data
are supposed to be independent realizations of a random
function, with the case where the random functions display
a dynamic dependence — that is, the case of a sequence of
function-valued, nonindependent random variables — not
attracting consideration until very recently. Bosq (2000)
provides a good presentation on the theory of linear pro-
cesses of such objects; see for example Damon and Guillas
(2005) for further developments.

One technique that is central to FDA is that of principal
components analysis. Such methodologies, the foundations
of which lie in the Karhunen-Loéve Theorem, seek a de-
composition of the observed functions as a sum of orthog-
onal projections onto a suitable orthonormal basis that
corresponds to the eigenfunctions of a covariance operator.
However, as was pointed out by Hall and Vial (2006), if the
observed functional data are imprecise (due to rounding,
experimental measurement errors, non-observability, etc.)
then so is the estimator of the covariance operator, which
poses a major methodological problem for the application
of principal components analysis to these observed data.
One possible way to overcome such difficulties is to impose
a condition in which the measurement errors vanish as the
overall sample size goes to infinity. For example, Petersen
and Miiller (2016) show that, for a sample of density esti-
mates, the covariance function of the latent density process
can be estimated consistently as long as the individual
sample sizes go to infinity together with the overall sample
size. However, when dealing with a sample of density
estimates in a time series framework — for instance, kernel
density estimates of the conditional density of an asset’s
intra-day 5 min returns — the individual sample sizes are
essentially fixed, removing the possibility of using the den-
sity estimates to estimate the true covariance function.

The methodology developed by Bathia et al. (2010),
which we will be following throughout this paper, relies
instead on the dynamic structure of the curve process as a
way of filtering the noise from the observed functions, and
of finding an appropriate orthogonal basis — related to the
lagged covariance functions — which spans the linear space
to which the curves pertain. This is an entirely original
approach, in that it does not need to rely on the stronger

assumption that the measurement errors would vanish in
the face of a large sample. In terms of its implementa-
tion, the method reduces to the eigenanalysis of a finite-
dimensional matrix, and the modeling of both the dynamic
structure of the PDFs and prediction procedures can be
carried out through traditional, and computationally less
expensive, multivariate time series methods.

The following section presents this methodology in de-
tail, after which Section 3 applies this methodology to
intraday Ibovespa data. In particular, we find evidence that
the dynamic structure of Ibovespa returns’ PDFs lies in a
two-dimensional subspace, and thus reduces to a R? vector
process whose evolution is shown to affect the disper-
sion and symmetry of returns distributions sequentially.
We generate one-step-ahead density forecasts, and also
provide an application to realized volatility forecasting,
demonstrating a forecasting ability that is comparable to
those of HAR realized volatility models in the model confi-
dence set framework. Section 4 concludes.

2. Methodology

Let fi,f>,... be a sequence of random densities, and
let rqt, ..., Iy, denote the n, observations of a financial
asset’s 5 min return process within day t. We consider the
model

rl‘t"gZ ~ ft7 (1)

where # denotes the o-algebra generated by
(ft : £t =1,2,...). Eq. (1) says that, conditional on .Z, the
financial returnsry, . . ., rp,; share the same marginal den-
sity within each day t, allowing these densities to evolve
stochastically from day to day. It is convenient to consider
the densities f; as random elements in the Hilbert space
I?> = I%(I) of square integrable functions defined on a
compact interval I C R, equipped with inner product
(f.g) = [f®)g®dxforall f,g € L. Randomness
of the f; may also be interpreted in a Bayesian sense, in
which case expressions such as P[f; € B] are understood
as prior probabilities. In this context, the terminology can
sometimes become confusing; for instance, when one says
that r;; follows the distribution f; (this is true for ry|.%
only). The reader should be careful to distinguish between
conditional and unconditional statements.

Now, the true densities f; are not observable in applica-
tions, and the statistician only has access to a sample of es-
timates g1, .. ., gy, obtained through some nonparametric
method applied to the data {r; }, for example. The densities
g; are taken to satisfy

g =fi0)+e®, xel, (2)

where ¢; is assumed to be noise, in the sense that (i)
E(er(x)) = Oforall tand all x € I; (ii) Cov (& (x),
&4k (¥)) = O forall x,y € I provided that k # 0; and
(iii) Cov (fy () ,es(¥)) = Oforall x,y € I and all t,s.
These conditions can be interpreted as saying that the error
in estimating f; is intrinsic to day t and exogenous with
respect to f;. Note that the requirement E (¢; (X)) = Ois a
strong one, since many density estimators are biased, such
as when g; is a kernel density estimator of f;, for example.
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