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a b s t r a c t

This paper introduces a new model for detecting the presence of commonalities in a set
of realized volatility measures. In particular, we propose a multivariate generalization of
the heterogeneous autoregressive model (HAR) that is endowed with a common index
structure. The vector heterogeneous autoregressive index model has the property of
generating a common index that preserves the same temporal cascade structure as in
the HAR model, a feature that is not shared by other aggregation methods (e.g., principal
components). The parameters of this model can be estimated easily by a proper switching
algorithm that increases the Gaussian likelihood at each step. We illustrate our approach
using an empirical analysis that aims to combine several realized volatility measures of the
same equity index for three different markets.
© 2016 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

The presence of co-movements in volatility mea-
sures is usually explained by common reactions of in-
vestors, policy makers or central banks to news relating to
certain macroeconomic and financial variables. Engle and
Marcucci (2006) find evidence indicating the presence of
common ARCH factors (Engle & Susmel, 1993) between
435 pairs obtained from 30 stocks of the Dow Jones in-
dustrial index. However, their statistical approach might
suffer from severe size distortions when applied in a
multivariate setting (see Cubadda & Hecq, 2011; Hecq,
Laurent, & Palm, 2016). Anderson and Vahid (2007) pro-
pose the examination of information criteria for deter-
mining the presence and number of principal component
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factors out of 21 Australian weekly stock return volatili-
ties. It turns out that this latter approach is probably more
robust to the presence of jumps and fat tails than the
canonical correlation framework of Engle and Marcucci
(2006). However, these contributions assume the dynam-
ics of the system to be very parsimonious, contrary to the
observed time series properties of daily volatility mea-
sures. For instance, the univariate heterogeneous autore-
gressive model (HAR; see Corsi, 2009) captures the long
range dependence observed in daily time series using a re-
stricted autoregressive model of order 22.

This paper proposes a newmodel for analyzing the joint
behaviors of a set of daily volatility measures. We start
out with a multivariate version of the HAR, namely the
vectorHAR (VHARhenceforth, see Bubák, Kočenda, & Žikeš,
2011). Next, we test, and consequently restrict, the VHAR
by means of a multivariate autoregressive index model
(Reinsel, 1983). In particular, we impose proper reduced
rank restrictions on the coefficient matrices of the VHAR
to obtain the vector heterogeneous autoregressive index
model (VHARI henceforth).
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The VHARI is nested within the unrestricted VHAR,
which in turn is a restricted version of a vector autore-
gressive model (VAR) of order 22. The VHARI provides a
parsimonious model whose forecasting performance can
be compared with those of either less restricted multi-
variate models (e.g., VHAR or VAR(22)) or univariate HAR
equations. At the representation theory level, the common
factors obtained from the VHARI, namely the indexes, pre-
serve the same temporal cascade structure as in the HAR;
i.e., the weekly (monthly) index is equal to the weekly
(monthly) moving average of the daily index. This is an im-
portant property of the VHARI that is not shared by most
of the alternative aggregationmethods (e.g., principal com-
ponents, canonical correlations, etc.).Moreover, in a VHARI
with one common component, a specification that is not
rejected by the data in the empirical section of this paper,
the unique index is generated by an univariate HARmodel.
This is not generally the case for alternative aggregation
strategies either.

The rest of the paper proceeds as follows. Section 2
presents the VHAR and VHARI models, with their implica-
tions. Statistical inference is discussed in detail in Section 3.
Note that we use a switching algorithm to maximize the
Gaussian likelihood of a given VHARI specification. Hence,
in principle, the adequacy of our set of restrictions can be
checked using either information criteria or likelihood ra-
tio tests. However, this strategy cannot be implemented for
factors obtained through principal component analysis, for
instance. Moreover, in the same vein as Takeuchi (1976),
we propose some modified versions of the usual informa-
tion criteria that are better suited for non-Gaussian series.
Section 4 contains a Monte Carlo simulation exercise that
documents the small-sample properties of our modelling
strategy. Section 5 uses the suggested framework to com-
bine ten realized volatility measures of the same equity
index for three different markets using data from the
Oxford-Man Institute of Quantitative Finance. Finally, Sec-
tion 6 concludes.

2. Model representation

2.1. The vector heterogeneous autoregressive model

Our starting point for capturing the dynamic interac-
tions within a set of n daily realized volatility measures

Y (d)
t ≡


Y (d)
1,t , . . . , Y

(d)
n,t

′

is a multivariate version of the
univariate HAR model (Corsi, 2009), as was used by Bubák
et al. (2011) and Souček and Todorova (2013), inter alia.

The vector Y (d)
t can include either the same kind of

volatilitymeasure (e.g., the realized variance)1 for different
markets in a study of volatility co-movements or several
volatility measures (realized variance, bipower variation,
etc.)2 for the samemarket in order to construct an optimal

1 The realized covariancesmay also be included in Y (d)
t , see Fengler and

Gisler (2015).
2 The realized variances are computed using RVt ≡

M
i=1 r

2
t,i , where

rt,i are the high frequency intra-day returns, observed for M intra-day
periods each day. For instance, when the market is open between 9 a.m.
and 4 p.m., M = 79 for 5-min returns. The bipower variation BVt ≡
π
2

M
M−1

M
i=2 |rt,i||rt,i−1| is one of the measures of the integrated volatility

that is designed to be robust to jumps. See, i.a., Barndorff-Nielsen and
Shephard (2004) and Bauwens, Hafner, and Laurent (2012).

linear combination like that of Patton and Sheppard (2009).
The latter analysis is pursued in Section 5 of this paper.

The vector heterogeneous autoregressivemodel (VHAR)
can be written as follows:

Y (d)
t = β0 + Φ(d)Y (d)

t−1d + Φ(w)Y (w)
t−1d

+ Φ(m)Y (m)
t−1d + εt , t = 1, 2, . . . , T , (1)

where (d), (w), and (m) denote time horizons of one day,
one week (five days in a week), and one month (assuming
22 days in a month) respectively, such that

Y (w)
t =

1
5

4
j=0

Y (d)
t−jd, Y (m)

t =
1
22

21
j=0

Y (d)
t−jd.

Here, the innovations εt are i.i.d. with E(εt) = 0, E(εtε′
t) =

Σ (positive definite), and finite fourth moments.
Beyond the fact that the HAR is a popular forecasting

tool, two considerations that arise from our empirical
analysis have led us to refer to Eq. (1) as a starting
point. First, having estimated unrestricted VAR(p) models
on a set of different volatility measures for each of the
markets at hand, it emerges that we reject the null of no
error autocorrelation for lags p of five or higher (using
heteroskedasticity-robust LR tests). This means that the
data have a greater dependence on the past. In principle,
one could increase the VAR order considerably, but the
curse of dimensionality remains a problem even when the
sample size is as large as is the case in typical financial
applications. Hence, Eq. (1) is a good compromise in terms
of parameter proliferation, since a VAR(22) has N2

× 22
mean parameters, whereas the model in Eq. (1) needs
N2

× 3 of them. Second, for the set of realized volatilities
considered, the coefficient matrices Φ(d), Φ(w) and Φ(m)

are far from being diagonals, and consequently a set of
individual HAR models does not seem appropriate.

The next subsection introduces additional meaningful
restrictions to Eq. (1), namely the steps required to go from
the VHAR to the VHARI.

2.2. The VHAR-index model

Let us further assume that Eq. (1) can be rewritten as:

Y (d)
t = β0 + β(d)ω′Y (d)

t−1d + β(w)ω′Y (w)
t−1d

+ β(m)ω′Y (m)
t−1d + εt , (2)

where ω is a n× q full-rank matrix. In terms of parsimony,
Eq. (2) needs 4(n × q) − q2 parameters instead of n2

×

3 in Eq. (1). Following Reinsel (1983), we label Eq. (2)
the VHAR-index (VHARI) model. To some extent, the
VHARI modeling is related to the pure variance model of
Engle and Marcucci (2006), in the sense that a reduced-
rank restriction is imposed on the mean parameters of a
multivariate volatility model. However, one fundamental
difference between Eq. (2) and the common volatility
model (see also Hecq et al., 2016) stems from the fact that
the former generally has a different left null space for the
loading matrices of the indexes β =


β(d)

: β(w)
: β(m)


.

Obviously, common volatility is allowed in the VHARI
model if there exists a full-rank n × s (with s < q) matrix
such that δ′β = 0.
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