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a b s t r a c t

This paper develops a new approach for evaluating multi-step system forecasts with
relatively few forecast-error observations. It extends the work of Clements and Hendry
(1993) by using that of Abadir et al. (2014) to generate ‘‘design-free’’ estimates of
the general matrix of the forecast-error second-moment when there are relatively few
forecast-error observations. Simulations show that the usefulness of alternative methods
deteriorates when their assumptions are violated. The new approach compares well with
these methods and provides correct forecast rankings.
© 2016 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

Both short- and long-term forecasts are important for
policy debates. For example, short-term debt forecasts are
linked to concerns about growth, while long-term debt
forecasts are tied to debt sustainability (e.g., Martinez,
2015).1 The joint importance of short- and long-term
forecasts is not limited to the area of macroeconomics,
but is found in a variety of topics, including climate
change (e.g., Pretis & Roser, 2016). While forecasts are
usually evaluated separately across horizons, Clements
andHendry (1993) illustrate that it is important to evaluate
forecasts jointly in order to capture any dependence in
the forecast errors across horizons. This allows for the
assessment of forecast performance in both the short- and
long-term.

While the joint evaluation of multiple forecast horizons
is useful, so too is the evaluation of large forecasting
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1 See Standard & Poor’s, ‘‘United States of America long-term rating
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systems. Large macroeconomic forecasting models which
try to capture the dependencies across variables are used
regularly by central banks.2 Although individual variables
from large forecasting systems are evaluated regularly,
relatively little work has been done to evaluate the
accuracy of the whole system jointly. One exception is the
work of Sinclair, Stekler, and Carnow (2012, 2015), who
evaluate a vector of forecasts simultaneously. However,
there are limitations as to how easily these methods can
be extended to evaluate multiple horizons jointly.

Despite the importance of analyzing forecasts jointly
across horizons and variables, the available methods have
limitations, due largely to a shortage of forecast-error
observations. For example, Clements and Hendry (1993)
propose the use of the general matrix of the forecast-
error second-moment and its determinant (GFESM) as
an invariant measure of the forecast accuracy. While the
GFESM allows for the joint evaluation of forecast errors
across variables and horizons, it deteriorates rapidly in
relatively small samples. Thus, an improved approach
for the evaluation of multi-step system forecasts with
relatively few forecast-error observations is required.

2 For example, see Bårdsen, den Reijer, Jonasson, and Nymoen (2012)
and Burgess et al. (2013).
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This paper presents a solution to this problem by
extending estimates of the GFESM to relatively small
samples. It combines the work of Abadir, Distaso and
Žikeš (2014) and Clements and Hendry (1993) to allow
for the estimation of the GFESM when there are more
variables (K ) times forecast horizons (H) than forecast-
error observations (N). This extends the GFESM to large
forecasting systems with long horizons even when there
are relatively few forecast-error observations.

The paper seeks to answer the following questions:
How well does the standard approach for calculating the
GFESM perform as KH approaches N? Is it possible to
improve on the standard approach when the forecast-
error second-moment matrix is singular or non-singular?
Comparing several approaches, this paper extends esti-
mates of the GFESM beyond the non-singular case to
the singular case where KH > N . It yields several im-
portant findings. First, the standard approach is increas-
ingly biased and imprecise when there are relatively few
forecast-error observations, which can distort the fore-
cast rankings. Second, the proposed method outperforms
the standard approach across a variety of forecast mod-
els and data generation processes (DGPs). Third, the pro-
posed method typically produces the correct forecast
ranking even when there are relatively few observations.

The rest of the paper is structured as follows. The
next section reviews different forecast accuracy evaluation
methods, with a focus on the GFESM. Section 3 lays out a
new analytical approach for calculating the GFESM when
KH > N . Section 4 conductsMonte Carlo experiments for a
known-parameters model in order to determine how well
the proposed method performs relative to the standard
approach in small-sample settings and across various
DGPs. Section 5 extends the Monte Carlo experiments to
alternative forecast models. Section 6 applies the methods
to a vector of forecasts of the US economy. Section 7
concludes.

2. Existing methods for evaluating forecast accuracy

This section provides a brief introduction to the theory
of forecasting, as well as a common approach to the
evaluation of forecasts, namely the mean square forecast
error (MSFE). It then goes on to introduce an alternative
approach, the general matrix of the forecast-error second-
moment and its determinant (GFESM). The advantages of
the GFESM over MSFE measures are illustrated, together
with its limitations and the ways in which it has been
applied in the literature.

Consider aDGP that is defined by a stationary, pth-order
vector autoregressive process (e.g., VAR(p)) for a vector of
K variables Yt:

Yt = θ +

p−1
j=0

5jYt−1−j + vt , where vt ∼ INK [0, �] . (1)

The bold terms are vectors, and vt is a (K × 1) vector
of independent normal residuals with mean 0, positive
definite variance �, and all of the eigenvalues of the
polynomial matrix


IK −

p−1
j=0 5jLj+1


, where L denotes

the lag operator, are inside the unit circle. Assuming that
the initial value is equal to its long-run mean, 2 =
IK −

p−1
j=0 5j

−1
θ, Eq. (1) can be rewritten as

Xt =

p−1
j=0

5jXt−1−j + vt , (2)

where Xt = (Yt − 2) is demeaned by its long-run mean.
Let 0p,i =

p−1
j=0 0p,i−1−j5j, 0p,0 = IK , 0p,i = 0 when i <

0, and 5j = 0 when j ≥ p. Then, the best possible h-step-
ahead forecast at time T is the conditional expectation:
XT+h|T = ET [XT+h|XT ] =

p−1
j=0 0p,max(0,h−j)5

min(1,j)
j XT−j,

where h ∈ [1, . . . ,H]. Therefore, given estimates of
5j


,

the forecast error is

uT+h|T =

XT+h −XT+h|T


=

p−1
j=0


0p,max(0,h−j)5

min(1,j)
j

−0p,max(0,h−j)5min(1,j)
j


XT−j

+

h−1
i=0

0p,ivT+h−i. (3)

When the true parameters are known, Eq. (3) delivers unbi-
ased forecast errors that have a variance of

h−1
i=0 0p,i�0′

p,i.
Thus, even the smallest possible multi-step forecast errors
from a dynamic model are moving average processes.

The MSFE, which assumes a quadratic loss function,
is used commonly to evaluate forecasts. In multivariate
systems, the MSFE becomes the mean square forecast
error matrix (or the matrix of the forecast-error second-
moment, MFESM):

ET
uT+h|Tu′

T+h|T


= Vh =

h−1
i=0

0p,i�0′

p,i, (4)

where the last equality holds when the true parameters
are known and vt is IID. Multivariate forecasts are often
evaluated using the trace of the MFESM: tr (Vh).

2.1. An invariant measure of forecast accuracy

Clements and Hendry (1993, 1998) propose a more
general and invariant measure of the forecast accuracy,
termed the general matrix of the forecast-error second-
moment (GMFESM), 8H , with its determinant |8H |, the
GFESM. The GMFESM is estimated by multiplying the
stacked forecast errors across all horizons and variables.
Following from Eq. (3), the forecast error uT+h+n|T+n is a
(K × 1) vector of h = 1, . . . ,H horizons from origin T +n,
where n = 0, . . . ,N−1 represents the number of forecast-
error observations.3 Stack the forecast errors as

WH,N|T =

uT+1|T · · · uT+N|T+N−1
...

. . .
...uT+H|T · · · uT+H+N−1|T+N−1

 , (5)

3 Note that the literature uses the terms ‘forecast origins’ and ‘forecast-
error observations’ interchangeably. The latter term is used here.
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