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a b s t r a c t

Wepropose a density forecast evaluationmethod in the presence of instabilities, which are
defined as breaks in any conditional moment of interest and/or in the functional form of
the conditional density of the process. Within the framework of the autocontour-based
tests proposed by González-Rivera et al. (2011) and González-Rivera and Sun (2015),
we construct Sup- and Ave-type tests, calculated over a collection of subsamples in the
evaluation period. These tests have asymptotic distributions that are nuisance-parameter
free and they are correctly sized and very powerful for detecting breaks in the parameters
of the conditional mean and conditional variance. A power comparison with the tests of
Rossi and Sekhposyan (2013) shows that our tests are more powerful across the models
considered in their work. We analyze the stability of a dynamic Phillips curve and find that
the best one-step-ahead density forecast of changes in inflation is generated by a Markov
switching model that allows state shifts in the mean and variance of inflation changes as
well as in the coefficient that links inflation and unemployment.
© 2016 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

In general, instability refers to changes in the param-
eters of a proposed forecasting model over the forecast-
ing horizon. For clarification purposes, consider a simple
model yt+1 = β ′xt + σεt+1, with εt ∼ i.i.d.N(0, 1).
The model is unstable over time if the slope coefficients
β can change over the forecasting sample, either smoothly
or abruptly, to contain one or more breaks. We may also
entertain a time-varying variance such that σ is also sub-
ject to breaks, andwemay have different conditional prob-
ability density functions, e.g., more or less thick tails, in
different periods. This definition is general enough to ac-
count for most of the types of instability that are discussed
in the current applied econometric literature. To date, the
most comprehensive survey of the subject is that provided
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by Rossi (2014) in the Handbook of Economic Forecasting,
which reports extensive empirical evidence of instabilities
in macroeconomic and financial data. Some examples fol-
low.

The instability of predictive regressions, in which the
significance of predictive regressors varies over different
subsamples, has been documented in studies of the
predictability of stock returns (see Goyal & Welch, 2003;
Paye & Timmermann, 2006; Rapach & Zhou, 2014), in
exchange rate predictions (see Rogoff & Stavrakeva, 2008;
Rossi, 2006) and in output growth and inflation forecasts
(see Rossi & Sekhposyan, 2010; Stock & Watson, 2003).
Naturally, linked to this evidence is the econometric issue
of testing for parameter stability and structural breaks in
the data, which has an illustrious history. From the Chow
(1960) test to more recent works such as those of Andrews
(1993), Andrews and Ploberger (1994) and Pesaran and
Timmermann (2002), among others, testing for breaks has
focused mainly on the behavior of the conditional mean.
This paper aims to extend the testing for instabilities to
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the full conditional density forecast that includes not only
any conditional measure of interest (e.g., mean, variance,
duration, etc.), but also the functional form of the assumed
conditional density function. To the best of our knowledge,
the literature on this question is very thin. We know only
of the work by Rossi and Sekhposyan (R&S) (2013), who
also tested for the instability of the density model, but
using a different methodology. A comparison of the two
approaches will be provided later.

The testing methodology that we propose is based on
the AutoContouR (ACR) device introduced by González-
Rivera, Senyuz, and Yoldas (2011) and González-Rivera
and Yoldas (2012), and later generalized by González-
Rivera and Sun (2015). A brief summary of this latter work
follows. The null hypothesis is a correctly specified density
forecast (with the joint hypothesis of correct dynamics
in the moments of interest and a correct functional
form of the density). We calculate the Rosenblatt (1952)
probability integral transforms (PIT) that are associated
with the point forecasts. Under the null, the PITs must
be i.i.d uniformly distributed U[0,1]. The generalized
autocontour (G-ACR) is a device (set of points) that is very
sensitive to departures from the null in either direction;
consequently, it provides the basis for very powerful tests.
More specifically, for a time series of PITs, we construct
the G-ACRs as squares (in the univariate case) of different
probability areas within the maximum square (area of 1),
or as hyper-cubes (in the multivariate case) of different
probability volumes within the maximum hyper-cube
formed by a multidimensional uniform density [0, 1]n for
n ≥ 2. By statistical comparisons of the location of the
empirical PITs and the volume of the empirical G-ACRs
with the location and volume of the population G-ACRs,
we are able to construct a variety of tests for correct density
forecasts. Since the shapes of the G-ACRs can be visualized,
we can extract information about where the rejection of
the null hypothesis comes from, and how. This testing
framework is the foundation of the new stability tests, the
Sup- and Ave-type statistics, proposed in this paper. In
a potentially unstable data environment, we form rolling
subsamples within the forecasting sample. For every
subsample,we apply a battery of G-ACR tests and construct
Sup- and Ave-type statistics for detecting instabilities.
Although the limiting distribution of these tests is a
function of Brownian motions, the tests are nuisance-
parameter free and their distributions can be tabulated.1

The R&S (2013) tests and our tests have similar null hy-
potheses, i.e., the constancy of the density model over the
prediction sample, although their statistics allow for dy-
namic misspecification. The R&S tests follow the setup of
Corradi and Swanson (2006), so that their tests, which are
also based on the PITs {ut} of the proposed model, are a
function of the distance between the empirical cumulative
distribution function and that of the uniform distribution,
which is a 45 degree line. Under dynamic misspecifica-
tion, the PITs are still distributed uniformly in [0,1], but are

1 Althoughwe focus on out-of-sample density forecasts, themethodol-
ogy proposed in this paper can also be applied to in-sample specification
testing.

no longer independent. Thus, the R&S tests borrow from
Corradi and Swanson, in that the limiting variance of the
statistics has to take into account the potential lack of in-
dependence. Their κP test is a Kolmogorov–Smirnov-type
statistic, and their CP is a Cramer-von Mises-type statistic,
whichmainly exploits the ‘‘identical distribution’’ property
of the PITs under the null. Our G-ACR tests are based on
the object ‘‘autocontour’’, and measure the independence,
denseness and uniform distribution of the PITs over a col-
lection of squares in a two-dimensional space (ut−k, ut). By
construction, our tests exploit the independence proper-
ties of the PITs directly. The asymptotic distribution of the
R&S tests is based on the statistical properties of an em-
pirical process. Our tests are simpler, in that they rely on
the properties of a binary indicator with well-defined mo-
ments. When the parameter uncertainty is non-negligible,
the critical values of the R&S tests and the G-ACR tests are
obtained by simulation.

The paper is organized as follows. Section 2 reviews
the G-ACR approach in order to make the exposition self-
contained, and introduces the new statistics with their
asymptotic distributions. Section 3 assesses the finite
sample properties (size and power) of the tests. We offer
an extensive assessment by considering (i) fixed, rolling,
and recursive estimation schemes; (ii) different ratios
of prediction to estimation sample sizes; and (iii) break
points that occur in different periods of the prediction
sample. We also present a comparison of the power of our
tests with those of Rossi and Sekhposyan (2013). Section 4
uses the tests to assess the stability of the Phillips curve
from 1958 onwards by evaluating the models proposed
by Amisano and Giacomini (2007). Section 5 concludes.
Appendix A contains mathematical proofs and Appendix B
describes the parametric bootstrap for correcting the size
of the tests. We also provide a supplementary file with
additional simulation materials (see Appendix C).

2. Statistics and asymptotic distributions

2.1. Construction of the statistics

The test statistics are based on the autocontour (ACR)
and generalized autocontour (G-ACR) methodologies pro-
posed by González-Rivera et al. (2011), González-Rivera
and Yoldas (2012), and González-Rivera and Sun (2015),
which provide powerful tests for the dynamic specification
of the conditional densitymodel in either in-sample or out-
of-sample environments. In the present context, we adapt
these tests to instances where instabilities may be present
in the data, so that we will also be able to detect unstable
periods beyond the evaluation of the density model.

Let Yt denote the random process of interest with a
conditional density function f (yt |Ωt−1), where Ωt−1 is
the information set available up to time t − 1. Observe
that the random process Yt could enjoy very general
statistical properties, e.g., heterogeneity, dependence, etc.
The researcher will construct the conditional model
by specifying a conditional mean, conditional variance
or other conditional moments of interest, and making
distributional assumptions as to the functional formof f (·).
Based on the conditional model, she will then proceed
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