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a b s t r a c t

Meta-heuristic search methods have been extensively used for optimization of truss structures over the
past two decades. In this study, a new meta-heuristic search method called ‘teaching-learning-based
optimization’ (TLBO) is applied for optimization of truss structures. The method makes use of the analogy
between the learning process of learners and searching for designs to optimization problems. The TLBO
consists of two phases: teacher phase and learner phase. ‘Teacher phase’ means learning from the teacher
and ‘learner phase’ means learning by the interaction between learners. The validity of the method is
demonstrated by the four design examples. Results obtained for the design examples revealed that
although the TLBO developed slightly heavier designs than the other meta-heuristic methods in a few
cases, it obtained results as good as or better than the other meta-heuristic optimization methods in
terms of both the optimum solutions and the convergence capability in most cases.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Meta-heuristic search methods have been used extensively for
optimization of truss structures over the past two decades. Ant
colony optimization (ACO), harmony search (HS), particle swarm
optimization (PSO), big bang–big crunch optimization (BB–BC)
and artificial bee colony optimization (ABC) are the most popular
meta-heuristic search methods. They also are classified as popula-
tion-based or nature-inspired optimization methods. The main
philosophy of all meta-heuristic optimization methods is to follow
some heuristics in order to obtain the best solution for an optimi-
zation problem. Basically, meta-heuristic optimization algorithms
generate new trial designs by following a random strategy which
is ‘‘guided’’ however by inspiring criterion. Therefore, the optimi-
zation search is termed ‘‘meta-heuristic’’ to differentiate this class
of algorithms from the fully heuristic optimization search [1].
Design optimization of skeletal structures using meta-heuristic
search methods is an important field of engineering under contin-
uous development. The state-of-art of the utilization of meta-
heuristic algorithms in weight or cost optimization of skeletal
structures has been recently reviewed by Lamberti [1] and Saka [2].

The ACO was originally proposed by Dorigo et al. [3] for optimi-
zation problems. The method simulates the foraging behavior of
real-life ant colonies. The ACO attempts to model some of the fun-
damental capabilities observed in the behavior of ants as a method
stochastic combinatorial optimization [4]. Ants can construct the
shortest path from their colony to the feeding source and back
through the use of pheromone trails [1]. In addition to its different

applications, the method has also been used for design optimiza-
tion of structural systems. For example, truss structures were opti-
mized by Camp and Bichon [5], Capriles et al. [6], Serra and Venini
[7], and Hasancebi et al. [8]. Frame structures were optimized by
Camp et al. [4], Kaveh and Shojaee [9], Hasancebi et al. [10], Kaveh
and Talatahari [11].

HS was developed by Geem et al. [12] for solving combinatorial
optimization problems. The method bases on the analogy between
the musical process of searching for a perfect state of harmony and
searching for solutions to optimization problems. The resemblance
for example between jazz improvisation that seeks to find musi-
cally pleasing harmony and the optimization is that the optimum
design process seeks to find the optimum solution as determined
by the objective function [2]. After Lee and Geem [13] and Lee
et al. [14] studies that utilized HS in optimization of truss struc-
tures, HS has been used for a variety of structural optimization
problems including optimum design of geodesic domes [15], gril-
lage systems [16], steel frames [17–21], and trusses [8,22,23]. In
addition to standard implementation of HS algorithm, researchers
developed many new features in HS. For example, Lamberti and
Pappalettere [22] introduced an improved harmony search formu-
lation where trial designs are generated including information on
the gradients of cost function. The new HS formulation completed
the optimization process in much less iterations than classical har-
mony search and other meta-heuristic optimization codes [22].
Hasancebi et al. [21] proposed an adaptive harmony search meth-
od for structural optimization. In the standard implementation of
HS, appropriate constant internal values are assigned. Therefore,
the efficiency of HS is directly related on chosen parameter value
set. The adaptive harmony search algorithm proposed by
Hasancebi et al. [21] incorporates a new approach for adjusting
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internal parameters automatically during the search for the most
efficient optimization process [21].

The PSO method was developed by Kennedy and Eberhart [24].
It is based on the premise that social sharing of information among
members of a species offers and evolutionary advantage [25]. The
procedure involves a number of particles which represent the
swarm being initialized randomly in the search space of an objec-
tive function. Each particle in the swarm represents a candidate
solution of the optimum design problem. The particles fly through
the search space and their positions are updated using the current
position, a velocity vector and a time increment [2]. PSO has been
used in optimization of skeletal structures [26–29]. Researchers
introduced new features in the standard implementation of PSO.
Li et al. [28,29] proposed a heuristic particle swarm optimizer
(HPSO), which combines a PSO scheme and a HS scheme, for sizing
optimization of truss structures. Kaveh and Talatahari [30,31]
introduced a particle swarmer, ant colony optimization and har-
mony search scheme for truss structures with both discrete [30]
and continuous variables [31]. The method combines a particle
swarm optimizer with passive congregation (PSOPC), ant colony
optimization (ACO) and harmony search scheme (HS).

The BB–BC proposed by Erol and Eksin [32] simulates the theo-
ries of the evolution of the universe. According to this theory, in the
Big Bang phase energy dissipation produces disorder and random-
ness is the main feature of this phase; whereas, in the Big Crunch
phase, randomly distributed particles are drawn into an order
[33]. BB–BC algorithm was applied for sizing optimization of truss
structures [34]. In order to improve convergence capability of stan-
dard BB–BC algorithm, Kaveh and Talatahari [33,35] developed hy-
brid BB–BC (HBB–BC) algorithm to optimize space trusses and
ribbed domes. The HBB–BC method consists of two phases: a Big
Bang phase where candidate solutions are randomly distributed
over the search space, and a Big Crunch phase working as a conver-
gence operator where the centre of mass is generated [33].

The ABC method was first developed by Karaboga [36] for
numerical function optimization. The ABC is an optimization meth-
od based on the intelligent behavior of honey bee swarm. In the
ABC method, each food source exploited by the bees represents a
possible solution to given optimization problem. The location
and amount of nectar from the flower patch correspond to the de-
sign variables and fitness function, respectively [37]. The ABC has
successfully been applied to size optimization of truss structures
with both continuous [37] and discrete variables [38]. Comparing
the results from the ABC algorithm with other meta-heuristic
methods demonstrated that ABC algorithm provides results as
good as or better than other optimization algorithms for optimiza-
tion of truss structures [37].

A novel optimization method called ‘teaching-learning-based
optimization (TLBO)’ has been proposed by Rao et al. [39] for con-
strained mechanical design optimization problems. The method
bases on the effect of influence of a teacher on learners and the ef-
fect of learners each other. Rao et al. [39] presented five different
constrained benchmark test functions in order to demonstrate
the robustness of TLBO. The results obtained from the design
examples were compared with the other meta-heuristic optimiza-
tion methods. The comparisons showed that the TLBO showed
better performance with less computational effort over other
meta-heuristic optimization methods. Rao et al. [40] developed
the TLBO method for large scale non-linear optimization problems
for finding global solutions. Five different benchmark problems are
optimized using the TLBO method and the results are compared
with the results of GA, ant colony system, bee algorithm and gre-
nade explosion method. The results proved that the TLBO method
is effective in terms of the computational effort, consistency and
obtaining the near optimum solutions. After the pioneering studies
of Rao et al. [39,40], the TLBO was employed for optimum design of

planar steel frames [41]. The efficiency of the method was verified
by using three steel frames previously optimized by the GA, HS,
and improved ACO. With regard to the number of analyses and
the results for the frames presented in the study, the TLBO method
demonstrated outstanding performance over the GA, ACO, HS, and
improved ACO [41].

In this paper, the robustness of the TLBO will be investigated in
the optimization of truss structures. Four popular benchmark truss
structures existed in the current literature are presented to test the
efficiency of the TLBO. The results obtained from the TLBO will be
compared with those of other meta-heuristic optimization algo-
rithms recently presented in literature like particle swarm optimi-
zation (PSO), heuristic particle swarm optimizer (HPSO), hybrid
particle swarm optimization (HPSO), big-bang big-crunch optimi-
zation (BB–BC), heuristic particle swarm ant colony optimization
(HPSACO), hybrid big bang big crunch optimization (HBB–BC), cor-
rected multi-level and multi-point simulated annealing (CMLPSA),
artificial bee colony optimization (ABC-AP), improved harmony
search algorithm (IHS), efficient harmony search algorithm (EHS)
and self-adaptive harmony search algorithm (SAHS).

The rest of this study is organized as follows. The formulation of
optimum design problem is given in Section 2. The TLBO method is
explained in Section 3. Optimization of truss structures using the
TLBO is described in Sections 4. The results obtained from the TLBO
are presented and compared with other meta-heuristic optimiza-
tion methods in Section 5. Finally, conclusions are presented in
Section 6.

2. The formulation of the optimum design problem

The minimum weight design problem for a truss structure can
be formulated as:

Find X = [x1,x2, . . . ,xng]

to minimize WðXÞ ¼
Xng

k¼1

xk

Xmk

i¼1

qiLi ð1Þ

subject to the following normalized constraints

gs
nlðXÞ ¼

jrnlj
jrnuj

� 1 6 0; 1 6 n 6 nm; 1 6 l 6 nl ð2Þ

gb
nlðXÞ ¼

jrclj
jrcuj

� 1 6 0; 1 6 n 6 ncm; 1 6 l 6 nl ð3Þ

gd
jlðXÞ ¼

jdjlj
jdjuj
� 1 6 0; 1 6 j 6 nn; 1 6 l 6 nl ð4Þ

xmin 6 xk 6 xmax k ¼ 1;2; . . . ;ng ð5Þ

where X is the vector containing the design variables, W(X) is the
weight of the truss structure, ng is the total number of member
groups (i.e. design variables), xk is the cross-sectional area of the
members belonging to group k, mk is the total number of members
in group k, qi is the density of member i, Li is the length of member i,
gs

nlðXÞ; gb
nlðXÞ and gd

jlðXÞ are the constraint violations for member
stress, member buckling stress and joint displacements of the struc-
ture. rnl and rcl are the member stress and the member buckling
stress of the nth member due to loading condition l, rnu and rcu

are their upper limits. djl is the nodal displacement of the jth trans-
lational degree of freedom due to loading condition l, dju is its upper
limit. nl is the number of load conditions, nn is the number of
nodes, max and min are the upper and lower limits for cross-
sectional area.

The optimum design of truss structures must satisfy optimiza-
tion constraints stated by Eqs. (2)–(5). In this study, the constraints
are handled by using a modified feasible-based mechanism [30].
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