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a b s t r a c t

This paper assesses the benefits of modeling Box-Cox transformed realised variance data.
In particular, it examines the quality of realised variance forecasts with and without this
transformation applied in an out-of-sample forecasting competition. Using various realised
variance measures, data transformations, volatility models and assessment methods, and
controlling for data mining issues, the results indicate that data transformations can
be economically and statistically significant. Moreover, the quartic root transformation
appears to be the most effective in this regard. The conditions under which the use of
transformed data is effective are identified.
© 2017 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

Power transformations, and Box-Cox (BC) transforma-
tions more generally, have long been recognised as an
effectiveway of obtainingwell-specifiedmodelswith sym-
metric errors and stable error variances; see Box and Cox
(1964) and Tukey (1957). More recently, the literature has
focused on assessing the out-of-sample performances of
time series models applied to BC transformed data. For in-
stance, Bårdsen and Lütkepohl (2011), Lütkepohl and Xu
(2012) Mayr and Ulbricht (2015) and Proietti and Lütke-
pohl (2013) demonstrate that the out-of-sample forecasts
from models that use BC transformed macroeconomic se-
ries can be more accurate than those frommodels that use
the original (non-transformed) series (cf. Nelson&Granger,
1979). Inspired by these results, we consider whether BC
transformations are useful within the context of forecast-
ing future realised variances.

The use of transformations in the context of the realised
variance is not new. Indeed, the application of models to
the log transformed realised variance is common practice;
see, e.g., Andersen, Bollerslev, and Diebold (2007); Ander-
sen, Bollerslev, Diebold, and Labys (2003), Corsi (2009),
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Hansen,Huang, and Shek (2012) andKoopman and Scharth
(2013).1 More recently, BC transformations have been con-
sidered in this context; see, e.g., Gonçalves and Meddahi
(2011), Nugroho and Morimoto (2016), Weigand (2014)
and Zheng and Song (2014).2 We add to this body of lit-
erature by examining the relative out-of-sample perfor-
mances of a range of contemporary models applied to
various BC transformed (and original) realised variance
measures. In doing so, we look at previously considered
transformation parameters (the square root and log trans-
formations), those that have not been used widely to date
(the quartic root transformation), and those based on the
nature of the data used (that is, an estimated transforma-
tion parameter).

The studies conducted by Weigand (2014) and Zheng
and Song (2014) are the most similar to the current paper,
in that both consider the out-of-sample costs/benefits of

1 The use of the log transformed realised variance is based on previous
findings that have shown these data to be Gaussian distributed; see,
e.g., Andersen, Bollerslev, Diebold, and Ebens (2001) and Andersen,
Bollerslev, Diebold, and Labys (2001).
2 Transformations are not always applied. For instance, Bollerslev,

Patton, and Quaedvlieg (2016) augmented the popular long-memory
heterogenous autoregressive (HAR) model of Corsi (2009), but decided
not to apply the log transformation as per the Corsi-proposed HARmodel.
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applying BC transformations within the context of volatil-
ity models. In the former study, Weigand (2014) proposes
two BC transformed models of the multivariate realised
variance (viz. the ‘matrix Box-Coxmodel of realized covari-
ances’ and the ‘Box-Coxdynamic correlationmodel’). In the
latter study, the framework builds on the stochastic volatil-
ity model proposed by Koopman and Scharth (2013), such
that BC transformed realised variance is a linear function of
the unobserved underlying volatility. Both of these studies
indicate that BC transformations (similar to the log trans-
formation) are beneficial in this context. We complement
and build on these studies in three ways. First, we con-
sider a wide range of univariate realised volatility models,
all of which are popular and/or have been proposed only
recently. Second, we conduct hypothesis tests that exam-
ine not only the relative performances of BC transformed
models and the original model, but also the relative per-
formances of models with different transformations (for
instance, log versus quartic root transformations). Third,
we analyse whether the relative performance is uniform
over different realised variance measures, both within a
particular market and across different market indices. Fur-
thermore, the probable determinants of this variation are
investigated.

The answer to the question of whether the original
realised variance measure should be transformed depends
on the loss function used to assess the forecasting
performance. For instance, if one uses the mean square
log (MS-log) error loss function (given by the mean of the
squared difference between the log forecast and the log
realised value), then modelling the log transformed series
will deliver the best results, as the model parameters are
optimised with respect to the same loss function that is
used to assess the performance.3 Thus, we avoid favouring
a particular BC transformation in this way by following the
extant literature and considering the mean square (MS)
and quasi-likelihood (QLIK) error loss functions applied to
the original realised variancemeasure. These belong to the
Bregman loss function family; see Banerjee, Guo, andWang
(2005), Gneiting (2011) and Patton (2015) for further
details.4 Under these loss functions, the optimal forecast is
obtained by minimising any Bregman loss function when
using the original data.

However, it is quite possible that the models them-
selves may not be ‘suited’ to the original (possibly highly
non-Gaussian) data. This leads to the possibility that mod-
els applied to transformed data may be superior because
they match the true data generating process more closely.
For instance, there is considerable evidence of increased
(long memory) persistence (and hence predictability) un-
der the log transformation assumption; see Ding, Granger,
and Engle (1993), Granger and Ding (1996) and Proietti
(2016). As a consequence, the forecasts of the BC trans-
formed model may be superior because of the suitabil-
ity of the model to the BC transformed data, even though

3 This implicitly assumes that the parameters are estimated by
minimising the sum of squared errors.
4 The Bregman loss function family possess the quality that the use of

the MS loss function for ranking the forecast quality leads to a consistent
ranking over all members of the Bregman loss function family, for
correctly specified models with nested information sets (Patton, 2015).

their parameters are not optimisedwith respect to the loss
function that is used to assess the performance. It is this
trade-off (parameter optimisation versus model suitabil-
ity) that we are examining in the current paper by consid-
ering whether or not to transform realised variance data.

We use a comprehensive set of realised variance mea-
sures to examine whether the use of BC transformations
is of value for forecasters. The results indicate that such
transformations can improve the forecasts of the future re-
alised variance across a range of models and under both
the MS and QLIK loss functions. Moreover, the quality dif-
ferences between forecasts based on modeling the orig-
inal and transformed data can be significant even after
controlling for data mining by using the reality check sta-
tistical tests proposed by White (2000). Of the BC trans-
formations that we consider, it is the quartic root (not the
log) transformation that delivers the best results. Finally,
we demonstrate that the benefits of BC transformation are
not spread evenly over the realised variance measures. In-
deed, for somemeasures no benefits are found, a result that
we demonstrate to be driven by the degree of skewness in
the original realised variance measure.

The rest of the paper is organised as follows. The
next section contains a description of the methodologies
employed, and is followed by the empirical results. The
final section concludes.

2. Methodologies

This section describes the models and methods used to
constructed forecasts, and themeans bywhich the relative
forecast quality is assessed.

2.1. Forecast construction: the problem

Let xt be the original data that we wish to forecast, in
our case the realised variance, xt > 0 and t = 1, 2, . . . , T .
As xt is likely to be highly non-Gaussian, we model the BC
transformed data, given by

yt = f (xt; λ) =


xλ
t − 1
λ

, λ ≠ 0,

ln xt , λ = 0.
(1)

It follows that xt = g(yt; λ) = f −1(yt; λ).5 Suppose
that the forecaster models yt and obtains h-step-ahead
forecasts given by the conditional mean of yt+h; that is,
E[yt+h|Ft ], where Ft is the forecaster’s information set.
Moreover, suppose thatwe require the conditionalmean of
xt+h, that is, E[xt+h|Ft ], or equivalently E[g(yt+h; λ)|Ft ].6

2.2. Forecast construction: the solution(s)

One obvious solutionwould be to take g(E[yt+h|Ft ]; λ),
referred to henceforth as the naïve adjustment forecast.

5 Note that yt represents the original realised variance measure when
λ = 1.
6 Under the Bregman loss function assumption, the conditionalmean is

the optimal forecast (Banerjee et al., 2005; Gneiting, 2011; Patton, 2015).
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