
International Journal of Forecasting ( ) –

Contents lists available at ScienceDirect

International Journal of Forecasting

journal homepage: www.elsevier.com/locate/ijforecast

EXSSA: SSA-based reconstruction of time series via
exponential smoothing of covariance eigenvalues
Fotis Papailias a,∗, Dimitrios Thomakos b

a 185 Stranmillis, Belfast BT9 5EE, Northern Ireland, United Kingdom
b University of Peloponnese, Tripolis 22100, Greece

a r t i c l e i n f o

Keywords:
Covariance decomposition
Eigenvalues
Forecasting
Gross domestic product
Income
Producer price index
Singular spectrum analysis
Smoothing
Trajectory matrix

a b s t r a c t

A critical aspect of singular spectrum analysis (SSA) is the reconstruction of the original
time series under various assumptions about its underlying structure. This reconstruction
depends on the choice of the components from the covariance decomposition of the
trajectory matrix. In most applications, this selection is based on the prior knowledge
and experience of the researcher and a variety of practical rules. This paper suggests
an alternative ‘‘fully automated’’ approach where all components of the covariance
decomposition are used via exponential smoothing of the covariance eigenvalues. We
illustrate the validity of the proposed approximation via simulations on different data
generating processes. A second contribution of the paper is the proposal of a ‘‘forecast
revision’’ algorithm which combines SSA with a benchmark. An empirical exercise using
four keymacroeconomic variables shows how thismethod can be used to improve the out-
of-sample forecasts of any given benchmark model. Our results suggest that the proposed
method has the potential to partly automate the use of SSA.
© 2016 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

There now exists a vast body of literature on the
topic of singular spectrum analysis (SSA). SSA is a non-
parametric technique which incorporates elements of
classical time series analysis, multivariate statistics, signal
processing, etc. It is favoured by both academics and ap-
plied researchers due to its wide applicability: stationary
and non-stationary, linear and nonlinear series can all be
analysed and predicted using SSA. There are many refer-
ences across journals from a range of different disciplines
on the theory and application of SSA that cannot be re-
viewed extensively here. As just a few of many possible
examples,1 see the recent book by Hassani and Patterson
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1 The works of the originators of SSA can be found in any of the papers
quoted in this section.

(2014); the papers by Beneki, Eeckels, and Leon (2011),
Hassani, Ghodsi, Silva, and Heravi (2016), Hassani, Heravi,
and Zhigljavsky (2009) and Lisi and Medio (1997) on fore-
casting applications; and the papers by Thomakos, Wang,
and Wille (2002) on applications to the realised volatility,
Moskvina and Zhigljavsky (2003) on change point detec-
tion, Alexandrov, Bianconcini, Dagumb, Maassa, and McEl-
roy (2011) on the problem of trend extraction, Carvalho,
Rodrigues, and Rua (2012) on tracking the US business cy-
cle, and Sella and Marchionatti (2012) and Sella, Vivaldo,
Groth, and Ghil (2013) on the analysis of economic cycles;
see also the paper by Hassani and Thomakos (2010), and
the references therein, for a review of the theory and ap-
plication of SSA to economic and financial time series, in-
cluding unit roots and cointegration. In addition, Hassani
and Mahmoudvand (2013), Hassani, Mahmoudvand, and
Zokaei (2011), Hassani, Mahmoudvand, Zokaei, and Gh-
odsi (2012) and Hassani, Webster, Silva, and Heravi (2015)
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suggest a solution to thewindow length selection problem.
Recently, a series of papers by Khan and Poskitt (2013a,b)
has renewed interest on the underlying econometric the-
ory for SSA. Their work has provided a solid theoretical
framework for determining when, why and how SSA can
perform well. Furthermore, they have provided new re-
sults on the selection of the window length and the signal
dimension.

SSA can be used to perform various tasks, such as
smoothing and trend extraction, among others. However,
one of the critical aspects of the method is the recon-
struction of the original time series under various assump-
tions about its underlying structure. This reconstruction
depends on the way in which the researcher chooses com-
ponents from the covariance decomposition of the under-
lying trajectory matrix. This choice depends on various
criteria, and although it can be ‘‘automated’’, it is mostly
based on prior knowledge, experience and the subjectmat-
ter under study. This paper is motivated chiefly by this dif-
ficulty, and suggests a new way in which all components
of the covariance decomposition can be used via the expo-
nential smoothing of the covariance eigenvalues. As with
all methodological approaches, our suggested method has
both pros and cons. The most obvious arguments in its
favour are that it avoids the need to decouple the time se-
ries into components (where errors can be made, if only
from a lack of experience in working with SSA) and that
it uses all components based on the relative ‘‘strength’’ of
the eigenvalues. The most obvious argument against it is
that it may mix or ‘‘confuse’’ different components that
one might want to separate, given that one of the crite-
ria for applying SSA is component separability. However,
as separability can only be judged after the analysis and
the choice of components is a matter of search and experi-
ence, it might not be a bad idea to have a fallback method
which can be used as a benchmark for component selec-
tion. The proposed approach takes advantage of the struc-
ture of the eigenvalues of a symmetric, positive definite
matrix, and our analysis confirms that it does have auto-
matic adaptability to various data generating processes. In
particular, the researcher now needs to choose only the
embedding dimension, i.e., the length of the window used
to construct the trajectory matrix, not any of the underly-
ing components. This enables the proposed method to be
adapted to either smoothing or modelling for forecasting
just by changing the embedding dimension. To the best of
our knowledge, this approach is completely new,while be-
ing similar in spirit to the work of Álvarez-Meza, Acosta-
Medina, and Castellanos-Domínguez (2013) on automatic
SSA decomposition.

While we show that our proposed method can indeed
be used to match the most significant eigenvalues across
a variety of data generating processes, one ought to
ask how it is going to be used after decomposition and
reconstruction. The main answer that we give tentatively
in this paper is that such a method ought to be able to
capture most of the significant variation in the underlying
series, thus capturing the ‘‘core’’ component of the series.
Note that what we call ‘‘core’’ here might be a mixture
of separable components, but we are not interested in
separability here; instead, we are interested in capturing

the part of the series that chiefly explains its direction.
Thus, we suggest that our method can be used to enhance
standard SSA forecasting applications either by potentially
obtaining better sign forecasts, or, as we illustrate later
in the paper, by providing auxiliary information to SSA
or other benchmark forecasts. We therefore aim to make
this method of ‘‘automating’’ SSA a way of including
potentially useful information in any forecasting context.
In the empirical application in this paper, we use the
suggested SSA approach to ‘‘revise’’ the forecasts of a given
benchmarkmodel.We show that the SSAwith exponential
smoothing of eigenvalues can improve the forecasts of a
benchmark autoregressive model for the annual growth
rate series of: (i) real disposable personal income, (ii) real
gross domestic income, (iii) real gross domestic produce,
and (iv) the producer price index. As a final note, the results
of our application indicate how the proposed method can
be used in order to improve the forecasting performance,
and in noway indicatewhich benchmark should be used in
other cases. The choice of the forecasting model to be used
as a benchmark is left to the discretion of the researcher.

The rest of the paper is organised as follows: Section 2
briefly reviews the SSA reconstruction of a time series
and explains the new approach using various examples of
DGPs and simulations; Section 3 provides the algorithm
and the empirical evidence on the applicability of the new
approach to the forecasting of the real disposable personal
income, real gross domestic income, real gross domestic
product, and producer price index annual growth rates;
and Section 4 summarises our conclusions.

2. SSA decomposition and reconstruction

2.1. Exponential smoothing of covariance eigenvalues

Consider the time series {Xt}t∈S that takes values in
RX ⊆ R. The index set S can be eitherZ orN, thus covering
the cases of both stationary and nonstationary time series.
Denote the (n × L) trajectory matrix of the sample {X}

N
t=1,

with n def
= N−L+1, as TX , andwrite TX

def
= [X1,X2, . . . ,XL],

where each Xi, i = 1, 2, . . . , L is a (n × 1) column vector.
L is the embedding dimension, the length of the window
used to construct the trajectory matrix (but note that n is
also an embedding dimension, even though traditionally L
is used as such).

The (L×L) sample covariancematrix is then defined as:

Cn
def
= n−1T⊤

X TX , (1)

and the (i, j)th element of Cn, with i ≥ j, is given by cn,ij
def
=

n−1X⊤

i Xj = n−1 N−L+j
t=j Xt+(i−j)Xt . In standard notation,

denote the spectral decomposition of Cn by:

Cn
def
= VΛV⊤

=

L
j=1

λjvjv⊤

j , (2)

with λ1 ≥ λ2 ≥ · · · ≥ λL. In applications, we would use
an estimate of TX that is given by:

TX (r)
def
= TXQ(r) =


j∈Ir

TX (j), (3)
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