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Abstract

In structural dynamics coupled systems with unbounded deformable members are characterized by radiation damping. Typically, the
unbounded subsystem is described in the frequency domain; either numerically or analytically by means of dynamical stiffness matrices.
Recent papers describe a matrix-valued rational interpolation of the dynamical stiffness and straightforward transformation into the
time-domain. In addition, the asymptotic behaviour has been considered, too, by adding fractional derivatives. However, the matrices
involved in this process are unsymmetric even if the original dynamical stiffnesses are symmetric. The approach presented in this paper
maintains the symmetry a priori without any numerical operations by simply using a rational approximation with a matrix-valued
numerator but a scalar-valued denominator and contains some further numerical advantages. The method is demonstrated by treating
an infinite beam on an elastic foundation.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

There is a wide range of engineering applications where
dynamic phenomena within infinite or semi-infinite media
are involved. Consider for example scattering or radiation
problems in acoustics, surface water waves in oceanogra-
phy or the problem of finding the stresses and displace-
ments within the earth in geophysics. As an example,
Fig. 1(a) shows a typical setup of a soil–structure interac-
tion problem with a turbomachine which causes transients
at startup or shutdown. Thus the system will go through
the resonance of the supporting structure and any damp-
ing, here especially the radiation damping, will become
essential. A consistent description of this radiation damp-
ing has been tackled by means of different concepts. For

transient excitations, nonlinear materials or geometrically
irregular setups, a direct finite element discretization may
be beneficial. However, disadvantages arise from the trun-
cation of the infinite medium by a bounded grid. Over the
last 20 years, strong efforts have been made to develop
measures to prevent the reflection of outgoing waves at
artificial boundaries, some of them are outlined in [1].
Exact and approximate representations on artificial inter-
faces have been summarized by Givoli in [2]. Generally
speaking, the basic method of this paper, too, is an approx-
imate Dirichlet-to-Neumann transformation on the trunca-
tion boundary of the infinite structure.

In a series of papers [3,7,8,9], Ruge et al. proposed a
matrix-valued rational relation in the coupling interface
between the state variables zc(t) (nodal displacements and
velocities) and the nodal forces fc assuming a harmonic
behaviour in the time domain

fc ¼ f̂c expðiXtÞ
zc ¼ ẑc expðiXtÞ

)
; f̂c ¼ KðXÞẑc; ð1Þ
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either

KðXÞ ¼ Q�1ðiXÞPðiXÞ þ K1ðiXÞ
or

KðXÞ ¼ PðiXÞQ�1ðiXÞ þ K1ðiXÞ;

ð2Þ

where Q and P are matrix polynomials:

QðiXÞ ¼ 1þ ðiXÞQ1 þ ðiXÞ2Q2 þ � � � þ ðiXÞM QM ;

PðiXÞ ¼ P0 þ ðiXÞP1 þ ðiXÞ2P2 þ � � � þ ðiXÞM�1
PM�1;

K1ðiXÞ ¼ lim
X!1

KðXÞ; P0 ¼ KðX ¼ 0Þ � K1ðX ¼ 0Þ:

ð3Þ
The special choice of K1 and P0 guarantees the exact asymp-
totic behaviour at both bounds of the frequency interval.

The unknown matrices Pj and Qj are determined by
minimizing the differences between a given set of pairs
(Kj,Xj) and the rational approximation in Eq. (2). How-
ever, in order to avoid nonlinear algebraic equations the
Q-weighted differences are minimized:

eitherXs

j¼1

jQðiXjÞ½Kj � K1� � PðiXjÞj !Minimum

orXs

j¼1

j½Kj � K1�QðiXjÞ � PðiXjÞj !Minimum:

ð4Þ

The first version in Eq. (4) has been elaborated for a semi-
infinite soil-halfspace [3] and for an infinite beam [7] and
the results found are really satisfactory. In [7] special atten-
tion has been paid to the asymptotic behaviour, which
causes fractional derivatives in the time-domain. In [8]
the elimination of spurious modes by means of eigen-
value-shifting was added to the frequency-to-time transfor-
mation scheme. There is only one property lost when
transforming the Kj-set into the rational version; symmetric
matrices Kj do not cause symmetric counterparts Pj, Qj.
Therefore the overall matrix representation of the coupled
system will be nonsymmetric even if the pure structure part

will be symmetric, a fact which is true in almost all situa-
tions in structural dynamics. This unsymmetry does not
only cause a double space in the storage memory; solution
schemes for symmetric problems are much more efficient
and numerically stable. In this paper a truly symmetric ver-
sion is obtained; the key idea towards a symmetric P, Q
representation comes from modal elimination but for
bounded domains.

2. Modal elimination

A typical finite-element discretization as shown in
Fig. 1(b) for the soil domain D with domain quantities
zD and interface quantities zC results in a matrix
representation

ACC þ iXBCC ACD þ iXBCD

ADC þ iXBDC ADD þ iXBDD

� �
ẑC

ẑD

� �
¼ f̂C

0

 !
ð5Þ

from which the domain-variables can be eliminated:

ðACC þ iXBCCÞ � ðACD þ iXBCDÞðADD þ iXBDDÞ�1
h
� ADC þ iXBDCÞð

i
ẑC ¼ f̂C: ð6Þ

The inversion of a so called k-matrix (k = iX) can be
realized by means of the corresponding right-side modal
matrix X and the left-side modal matrix Y of the pair
ADD, BDD.

ðADD þ kBDDÞx ¼ 0! X ¼ x1 . . . xnD½ �;
ðAT

DD þ kBT
DDÞy ¼ 0! Y ¼ y1 . . . ynD

� � ð7Þ

The well-known orthogonality conditions,

YTADDX ¼ diagfajg; j ¼ 1; . . . ; nD;

! A�1
DD ¼ Xdiag

1

aj

� 	
YT;

YTBDDX ¼ diagfbjg; j ¼ 1; . . . ; nD;

! B�1
DD ¼ Xdiag

1

bj

( )
YT;

ð8Þ

Fig. 1. Soil–structure interaction: (a) system with unbounded soil-domain, (b) system with bounded soil-domain.
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