
A constraint Jacobian based approach for static analysis of pantograph masts

B.P. Nagaraj a,1, R. Pandiyan a,2, Ashitava Ghosal b,*

a ISRO Satellite Centre, Bangalore 560 017, India
b Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore 560 012, India

a r t i c l e i n f o

Article history:
Received 10 April 2009
Accepted 21 September 2009

Keywords:
Pantograph masts
Deployable structures
Null-space
Jacobian
Stiffness matrix

a b s t r a c t

This paper presents a constraint Jacobian matrix based approach to obtain the stiffness matrix of widely
used deployable pantograph masts with scissor-like elements (SLE). The stiffness matrix is obtained in
symbolic form and the results obtained agree with those obtained with the force and displacement meth-
ods available in literature. Additional advantages of this approach are that the mobility of a mast can be
evaluated, redundant links and joints in the mast can be identified and practical masts with revolute
joints can be analysed. Simulations for a hexagonal mast and an assembly with four hexagonal masts
is presented as illustrations.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Deployable structures can be stored in a compact configuration
and are designed to expand into stable structures capable of carry-
ing loads after deployment. In their general form, they are made up
of a large number of straight bars (links) connected by revolute
joints and with one or more cables used for deployment or increas-
ing the stiffness of the deployed structure (see, for example, [1,2]).
Initially, the whole assembly of bars can be stowed in a compact
manner and, when required, can be unfolded into a predefined
large-span, load bearing structural form by simple actuation of
one or more cables. This characteristic feature makes them emi-
nently suitable for a wide spectrum of applications, ranging from
temporary structures that can be used for various purpose in
ground to the large structures in aerospace industry. Deployable/
collapsible mast are often used for space applications since in their
collapsed form they can be easily carried as a spacecraft payload
and expanded in orbit to a desired size. Many deployable systems
use the pantograph mechanism or scissor-like elements (SLE’s).
Typically, an SLE has a pair of equal length bars connected to each
other at an intermediate point with a revolute joint. The joint al-
lows the bars to rotate freely about an axis perpendicular to their
common plane. Several SLE’s are connected to each other in order
to form units which in plan view appear as regular polygons with
their sides and radii being the SLE’s. Several such polygons, in turn,

are linked in appropriate arrangements leading to deployable
structures that are either flat or curved in their final deployed con-
figurations. The assembly is a mechanism with one degree of free-
dom from the stowed/folded configuration till the end of
deployment. The deployment is through an active cable and after
deployment the assembly is a pre-tensioned structure. Active
cables control the deployment and pre-stress the pantograph and
passive cables are pre-tensioned in the fully deployed configura-
tion. These cables have the function of increasing the stiffness in
the fully deployed configuration [3].

1.1. Kinematics and mobility

The kinematics of multi-body mechanical systems can be stud-
ied by use of relative coordinates [4], reference point coordinates
as used in the commercial software ADAMS [5] or Cartesian coor-
dinates (also called natural/basic coordinates) [6]. In Refs. [7,8],
Garcia and co-workers have used Cartesian coordinates to obtain
the constraints equations for different types of joints and for kine-
matic analysis of mechanisms. Typical pantograph masts are over-
constrained mechanisms according to Grübler–Kutzbach criteria,
and in Ref. [9], Cartesian coordinates have been used to study the
kinematics and mobility of deployable pantograph masts – the
authors use the derivative of the constraint equations and develop
an algorithm to obtain redundant link and joints in over-con-
strained deployable masts, perform kinematic analysis and obtain
global degrees of freedom. The key advantage of Cartesian coordi-
nates is that the constraint equations are quadratic (as opposed to
transcendental equations for relative coordinates), and, hence their
derivatives are linear. As shown in [9], these features allows easier
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manipulation and simplification of expressions in a computer
algebra system to obtain symbolic expressions and closed-form
solutions for the kinematics of pantograph masts. A disadvantage
of Cartesian coordinates is that the number of variables is typically
larger and tends to be (on average) in between relative coordinates
and reference point coordinates. However, for analysis of panto-
graph masts, the number is not too large and could be handled
without much difficulty in the computer algebra system, Mathem-
atica, used in this work.

The masts in their deployed configuration become pre-ten-
sioned structures. For pre-stressed structures with pin jointed bars,
the necessary condition for the structure to be statically and kine-
matically determinate is given by the Maxwell’s rule

3j� b� c ¼ 0 ð1Þ

where, j is the number of joints, b is the number of bars or links and
c is the number of kinematic constraints. Calladine [10] generalized
the Maxwell’s rule as

s ¼ b� r

m ¼ 3j� c � r

3j� b� c ¼ m� s ð2Þ

where, m is the number of internal mechanisms, s is the number of
states of self-stress, and r is the rank of the equilibrium matrix. This
equation is referred to as the extended Maxwell’s rule. The values m
and s depends on the number of bars and joints, topology of the
connection and on the geometry of the frame work. The numerical
values of the vectors describing s and m, for a given system, can be
determined from the singular value decomposition (SVD) of the
equilibrium matrix. The concept of using a Jacobian matrix to eval-
uate the mobility was first presented by Freudenstein [11] for an
over-constrained mechanism. Later, the first and higher order deriv-
atives of constraint equations has been used for under constrained
structural systems to evaluate mobility and state of self-stress by
Kuznetsov [12,13]

1.2. Structural matrix

The mechanism at the end of deployment becomes a pre-ten-
sioned structure and the structural matrices are useful for evaluat-
ing the stiffness/displacement of the SLE masts in the deployed
configuration. In literature, researchers have used various methods
for formulating the structural matrix for an SLE. These are termed
as force method [14], displacement method [15] and equivalent con-
tinuum model [16]. We describe each of these methods in brief
below.

1.2.1. Force method
In the force method, as used by Kwan and Pellegrino [14], the

SLE is discretised into four beam elements. The equilibrium, comp-
atability and flexibility matrices are derived for a typical beam ele-
ment in a local coordinate system using shear force and bending
moment relationships. These equations are transformed to the glo-
bal coordinate system by using the rotation matrices and are
assembled for the four beam elements, which make up the SLE.
The equilibrium matrix is reduced in size by matrix partitioning
and by setting the end moments to zero [18]. In this approach
one can evaluate the number of self-stress states and the number
of infinitesimal mechanisms of the given system by using singular
value decomposition (SVD) of the equilibrium matrix [19].

1.2.2. Displacement method
The displacement method is used by Shan [15] to formulate

stiffness matrix for the SLE. In his approach, each link of the SLE
is called an uniplet. One uniplet of the SLE is modeled as an assem-

bly of two beam elements with mid node at the pivot point of SLE.
The stiffness matrix was partitioned to have the translation terms
and rotational terms in order. The final reduced stiffness matrix is
obtained by condensing and removing the rotational degrees of
freedom of all the three nodes. In Ref. [20], the authors have formu-
lated the stiffness matrix for two uniplets, called as a duplet, by
using the stiffness matrix of the uniplet developed above. Matrix
partitioning is used to get the reduced stiffness matrix which con-
denses the translational degrees of freedom of the pivot node.

1.2.3. Equivalent continuum model
This approach was used to predict the stiffness characteristics

of deployable flat slabs when they are subjected to normal loads
[16,17]. In this method, the SLE is considered as an equivalent uni-
form beams that deflects identically to the given loading as that of
an SLE. The flat large deployable structure is substituted with an
equivalent grid of uniform beams running in particular directions
The beams are rigidly connected to each other. This arrangement
is reduced to an equivalent orthotropic plate of constant thickness
and stiffness matrix is obtained. The results predicted by this
method are approximate unlike above methods and hence can only
be used for initial design phase which reduces the computational
time. In an exact finite element modeling the storage space
requirements are large for large number of SLE units due to the
complicated pivotal connections and hinged connections that re-
quire more than one nodal point to be described accurately. The
equivalent approach can significantly reduce the computational
effort during preliminary design stage.

1.2.4. Comparison of existing methods
The force method gives the additional information about the

states of self-stress and infinitesimal mechanisms. The displace-
ment method or equivalent continuum model does not give this
information. The force method uses two matrix reductions which
reduces the matrix of dimension 18� 14 to 12� 8 in the first step.
Further in the second step the matrix dimension is reduced from
12� 8 to 10� 6, to obtain the final reduced equilibrium matrix.
The displacement method has a stiffness matrix of dimension
18� 18 for the two assembled beam elements with six degrees
of freedom at each node. By condensing the rotational degrees of
freedom at all the nodes the matrix dimension reduces to 9� 9.
The reduced matrix has only translational degrees of freedom at
each node. The equivalent continuum approach is useful for very
large repetitive structures. However, this method does not give
the accurate results when compared to other two methods and,
hence, can be used only for initial design phase to reduce compu-
tational time.

As mentioned earlier, at the end of deployment we get a struc-
ture capable of bearing loads, and in this paper, we extend the ap-
proach in [9] to the static analysis of deployable pantograph masts.
We present a new approach to formulate the structural matrices
for a typical SLE using Cartesian coordinates, the kinematic equa-
tions of the SLE/pantograph element, and the constraint Jacobian
matrix. These matrices are derived by using the symbolic compu-
tation software Mathematica [21]. The results of formulations ob-
tained by this approach matches exactly with the results of force
and displacement based methods. Our approach has the advanta-
ges of the force method in evaluating the states of self-stress and
infinitesimal mechanisms. However, in our approach, the final re-
duced equilibrium matrix can be obtained in a single step unlike
in the force and displacement methods. In addition, the constraint
equations of the links and joints are useful in studying the kine-
matics behavior of pantograph masts during deployment, in evalu-
ating the redundancy in the links/joints of these over-constrained
systems, and in obtaining the final degrees of freedom of the
deployable masts. In literature the successive SLE joint connection
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