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Abstract

The aim of this paper is to present two methods for the calculation of the nonlinear normal modes of vibration for undamped non-
linear mechanical systems: the time integration periodic orbit method and the modal representation method. In the periodic orbit
method, the nonlinear normal mode is obtained by making the continuation of branches of periodic orbits of the equation of motion.
The terms “periodic orbits” means a closed trajectory in the phase space, which is obtained by time integration. In the modal represen-
tation method, the nonlinear normal mode is constructed in terms of amplitude, phase, mode shape, and frequency, with the distinctive
feature that the last two quantities are amplitude and total phase dependent. The methods are compared on two DOF strongly nonlinear

systems.
© 2006 Civil-Comp Ltd. and Elsevier Ltd. All rights reserved.
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1. Introduction

Extending the concept of normal modes of vibration to
the case where the restoring forces contain nonlinear terms,
has been a challenge to many authors. This has led to the
so-called nonlinear normal modes (NNMs) which have
great potential for applications in nonlinear vibrating sys-
tems. For instance, a damped system exited by harmonic
forcing will have its resonances close to the NNMs, and
this is a first obvious motivation for their computation. It
is also now established that the knowledge of the NNMs,
together with their bifurcations, can be very helpful to
understand the dynamics of a nonlinear system [1]. Some
important phenomenon such as the localisation of the
motion [2], the interaction between modes [3], the pumping
of energy of a linear system by a pure nonlinear one [4],
can be nicely explained using the NNM concept. The
NNMs are also important for the modal controllability
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of nonlinear systems [5]. Finally, eventhough the principle
of superposition does not hold for nonlinear equations, the
NNM can be useful to generate effective reduced-order
models for multi-degree-of-freedom nonlinear systems
[6,71.

Following the pioneer work by Rosenberg [8] on conser-
vative systems, several attempts have been made to develop
methods for the calculation of nonlinear normal modes.
Without entering into details, we mention here several clas-
ses of techniques which have aimed this goal. They are the
harmonic balance approach [9-12], the normal form theory
[13-15], many perturbation techniques [16,17] such as the
famous multiple scale analysis, and the invariant manifold
method [18,19] which led to a new definition of NNMs,
extending the concept to nonconservative systems. Many
of the above mentioned methods are based on some kind
of perturbation expansions with a truncature of the series
after the first few leading order terms. They have the
advantage to provide analytical expressions of the NNMs,
but on the other hand, the drawback to be limited to weak
nonlinearities or small amplitudes. Is it now evident, see
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[7,20] for instance, that numerical methods should be
developed to complete the analytical ones. These numerical
methods should be able to explore the NMN at large
amplitude of vibration, and possibly, to detect all kind of
bifurcations along a NNM. The aim of this paper is to
present and compare two approaches that fall in that cate-
gory. The first one is the time integration of a periodic orbit
and the second, the modal representation method. In both
of them, we compute a one dimensional family of periodic
solutions that are parametrized either by the level of
mechanical energy or by the amplitude of the orbits. These
families of periodic orbits provide a two dimensional
invariant subspace of the phase space which has the prop-
erty to pass through the equilibrium point (zero amplitude
orbits) and to be tangent to the linear mode of the under-
lying linear system (small amplitude orbits). Accordingly,
these families of orbits correspond to the NNM as defined
by Shaw and Pierre [18,19].

The paper is organized as follows: the mechanical frame-
work is given in Section 2. Section 3 is devoted to the first
method which is the time integration of periodic orbit. The
NNMs are computed here by making the continuation of
branches of periodic orbits that are parametrized by the
energy level. The closed orbits are computed using an ‘“‘exact
energy conserving” time integration algorithm [21]. This
transforms the boundary value problem into an algebraic
one which depends on a free parameter, and which is solved
with a semi-analytical continuation technique: the so-called
asymptotic-numerical method (ANM) [22]. This approach
provides the period of the oscillations on the NNMs, and a
time discrete representation of the orbits. The determination
of the stability and of the bifurcation of the NNM is well
established with this numerically oriented approach [23]. It
will presented in a forthcoming paper. Section 4 is devoted
to the second method called “the modal representation
method”. As in the linear case, an expression is developed
for the NNM in terms of the amplitude, mode shape, and fre-
quency, with the distinctive feature that the last two quanti-
ties are amplitude and total phase dependent. The dynamics
of the periodic response is defined by a one dimensional non-
linear differential equation governing the total phase
motion. The period of the oscillations, depending only on
the amplitude, is easily deduced. It is established that the fre-
quency and the mode shape provide the solution to a 2z-peri-
odic nonlinear eigenvalue problem from which a numerical
Galerkin procedure is developed for approximating the
NNMs. This formulation allows us to characterize the sim-
ilar NNMs. It leads also to an analytical (parametric) expres-
sion of the invariant manifold and it permits to compute the
NNM even in the case of resonance relations between the
eigenvalues of the linearized system. The extension of the
formulation in the case of damped autonomous mechanical
systems is considered in [24]. Finally, in Section 5, these two
methods are compared on a benchmark problem with two
Green—Lagrange springs, which is representative of
geometrically nonlinear thin structures such as plates and
shells.

2. Mechanical framework

In this study, we consider the undamped autonomous
nonlinear n degrees of freedom (n-DOF) mechanical system

MU(7) + F(U(z)) = 0, (1)

where M is the mass matrix, and F(U) is the vector of
restoring forces including linear and nonlinear terms. The
overdots stand for temporal derivatives. The following
assumptions will be made throughout this study:

e H1: M is a symmetrical positive definite matrix;

e H2: F(U) =% (U) where W(U) is a scalar potential
energy function of the vector U € R", W has a continu-
ous second derivatives, is positive, and admits a local
minimum at U= 0. (As usual & (U) will be denoted

Wu(U)).

The conservative system (1) has a first integral corre-
sponding to the conservation of the total energy E, which
is the sum of the kinetic energy and the potential energy
Wie.

E(U(2)) = %U(l)TMU(I) + W(U(1)). (2)
The linear equation
MU(#) + [7 wu (0)JU(2) = 0, 3)

where [W yu(0)] denotes the Hessian matrix for the func-
tion W at U = 0, will be called the underlying linear system
(or linearized system) associated with the nonlinear equa-
tion (1).

It should be noted that the framework (1) includes the
equations of motion of elastic thin structures with geomet-
rical nonlinearities such as shells, plates, beams and cables.
The continuous model should be discretised using a classi-
cal Ritz or finite element method.

In the following, we focus on the periodic solution of
(1). If there is no internal resonance (the eigenfrequencies
of the linearized system (3) are no commensurable), the
conservative system (1) possesses at least n two dimensional
families of periodic solution around the stable origin
U =0. These two dimensional families of periodic orbits
allow description of two dimensional invariant manifolds
of the phase space, corresponding to the NNM, as defined
by Shaw and Pierre [18].

3. Periodic orbits method

The numerical computation of periodic orbits has
already been addressed in textbooks [23,25] either for the
calculation of isolated orbits or for the continuation of a
family of orbits. The most popular method is the so-called
shooting method which consists in finding a suitable initial
condition, that induces a closed trajectory in the phase
space. This leads to a boundary value problem [23] where
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