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Abstract

The geometrically non-linear, linear elastic, oscillations of composite laminated plates are studied in the time domain by direct
numeric integration of the equations of motion. A p-version finite element, where first-order shear deformation is followed and that
was recently proposed for moderately thick plates, is employed to define the mathematical model. By applying transverse harmonic
forces, the variation of the oscillations with the angle of the fibres is investigated. With this kind of excitation, only periodic motions
with a period equal to the one of the excitation are found. However, introducing in-plane forces, m-periodic or quasi-periodic oscilla-
tions, as well as chaotic oscillations are computed. The existence of chaos is confirmed by calculating the largest Lyapunov exponent.
� 2006 Civil-Comp Ltd. and Elsevier Ltd. All rights reserved.
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1. Introduction

Composite laminated plates are used in many areas such
as aeronautics, naval industry and microelectronics [1]. If
actuated by large excitations at frequencies close to reso-
nance frequencies, those plates may undergo vibrations
with large amplitude, therefore in the geometrically non-
linear regime. In this case, it has been found that harmonic
excitations can produce periodic oscillations where har-
monics of the excitation frequency are quite important
[2–5].

Quasi-periodic and chaotic oscillations are also possible
in composite laminates. In Ref. [6] one composite plate and
one composite cylinder are investigated by numerically
integrating in the time domain a set of finite element equa-
tions. The excitation is provided by a temperature field and
the response described by time and phase plots. According
to the authors, the highly irregular oscillations of the plate
observed after a certain number of cycles – when displace-

ments as large as 15 times the plate thickness are attained –
are chaotic due to their irregularity. Moreover, the por-
trayed motions are quite irregular from the outset, i.e.,
even for low vibration amplitudes. Maestrello presents in
Ref. [7] an experimental analysis on two adjacent aircraft
panels forced by a turbulent boundary layer and a pure
tone sound. Responses changing from periodic, to quasi-
periodic and finally to chaotic – in a characteristic route
to chaos [8] – were observed. To describe the type of
motion, the time histories, spectral densities and phase
portraits were presented and the largest Lyapunov expo-
nent computed for some experimental data. Another note-
worthy study is presented in Ref. [9], where the behaviour
of a laminated plate under the effects of high-supersonic
flow was analysed. The reduced set of equations of motion,
which was obtained applying Galerkin’s method, was
solved by a continuation procedure to determine static
solutions; the shooting and multiple-scales methods were
employed to find periodic motions and direct numerical
integration for non-periodic states.

Accurate numerical prediction of multi-harmonic,
quasi-periodic or chaotic oscillations of a structure is diffi-
cult to undertake essentially due to two reasons, which
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contribute to large computational time and memory
requirements. First, for most cases, an accurate model
requires a large number of degrees of freedom, particularly
if one takes into account that the non-linear mode shape is
not constant and that several modes may influence the
response. Second, higher frequencies are likely to appear
in the response, therefore a time domain analysis requires
the use of small time steps.

A p-version, hierarchical finite element was developed
recently following first-order shear deformation theory
and applied to study periodic free vibrations [10]. This
finite element requires a moderate number of degrees of
freedom for accuracy and is not prone to shear locking.
It has other known advantages of p-elements [11], like
the fact the number of finite elements is determined by
the geometry of the structure to study, rather than by
precision requirements. Consequently, the user can define
a precise computational model without much effort.

In this paper, the p-version element presented in [10] is
employed to study forced, i.e., non-autonomous, oscilla-
tions of symmetric laminated plates in the non-linear
regime. The shear deformation and rotary inertia are con-
sidered in the model and the force in the direction trans-
verse to the plate is sinusoidal in time. Direct numeric
integration of the equations of motion is carried out by
Newmark’s method [12]. The Poincaré maps, phase plots
and time histories are shown, and the largest Lyapunov
exponent of a chaotic oscillation is computed.

2. Equations of motion

The element employed is briefly described in the follow-
ing paragraphs along with the derivation of the equations
of motion. More details on the element can be found in
[10].

It is here accepted that the displacement components of
a particle along the x and y directions – displacements u, v

– and the displacement along the z direction – displacement
w – are given by

uðx; y; z; tÞ ¼ u0ðx; y; tÞ þ zh0
yðx; y; tÞ ð1Þ

vðx; y; z; tÞ ¼ v0ðx; y; tÞ � zh0
xðx; y; tÞ ð2Þ

wðx; y; z; tÞ ¼ w0ðx; y; tÞ ð3Þ

where the superscript ‘‘0’’ represents the middle plane and
the independent rotations of the normal to the middle
plane about x and y are denoted by h0

x and h0
y (Fig. 1).

The theory resulting from this displacement field is usually
designated as the first-order shear deformation theory
(FSDT) [1].

For each element, the middle plane displacements and
the rotations are expressed as products of space and time
functions:
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where {qu(t)}, {qv(t)}, {qw(t)}, fqhy
ðtÞg and fqhx

ðtÞg are the
vectors of generalised displacements and rotations. The
complete matrix of shape functions present in (4) is consti-
tuted by the row vectors of bi-dimensional in-plane, out-of-
plane and rotational shape functions. These row vectors
are formed by one-dimensional displacement shape func-
tions as explained in [10]. p0, pi, phy

and phx
are the numbers

of transverse, middle plane, rotation about y and rotation
about x, one-dimensional shape functions employed.

Concerning the transverse displacements, Legendre
polynomials in the Rodrigues’ form plus the four Hermite
cubics will be used [10]. A set of polynomials called the g

set [10] will be applied in conjunction with linear functions
for the in-plane displacement as well as for the rotation
fields.

The plane stress constitutive equation for the kth layer
states that [1]
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where CðkÞij are the reduced stiffnesses of the kth layer, which
can be obtained from E1, E2, major and minor Young’s
moduli, from the Poisson’s ratios m12 and m21 and from
the shear modulus G12 [1]. The numbers 1 and 2 in the elas-
tic properties, denote the principal directions of the ortho-
tropic plate layer. A shear correction factor, which
accounts for the fact that the shear stresses are not constant
across the section, is employed [13]. The classic value k =
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y, η, v0z, w0
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Fig. 1. Plate dimensions, displacements, global and local (n and g)
coordinates.
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