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Abstract

Topology optimization is of significant importance to the design of truss- and grillage-like structures. Conventional

topology optimization procedures are usually based on the ground structure approach. Starting from highly connected

structures the uneconomical links are eliminated during the course of optimization. In this paper we show that, addi-

tionally, stochastic methods offer the possibility to build-up structures starting from simple initial configurations with

few elements. Stochastic optimization methods (simulated annealing, evolutionary algorithms, random cost) are applied

to the topology design problem on the basis of appropriate local structure variations. Results and performance com-

parisons are given.
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1. Introduction

Attempts to apply optimization algorithms to the

complex task of structural design have been made over

a considerable time. One of the many problems encoun-

tered in this field is the topological design of discrete

structures like trusses. The different approaches can

roughly be divided into the following categories [8,21]:

The most common approach is the ground structure

method where the optimization is started from highly

connected initial structures. During the optimization

process the unnecessary structural members will be elim-

inated (see e.g., [4]). It is evident that in practical appli-

cations the ground structure approach necessarily leads

to large matrices.

The class of optimality criteria methods covers a

number of different strategies (see e.g., [13,22]). They

are based upon stress criteria, displacement criteria or

the Kuhn–Tucker necessary conditions of optimality.

Although optimality criteria procedures in general have

proven to be efficient in topology design there might be

problems concerning convergence and stability.

The homogenization method [4] is based on using

composite materials to model local material properties.

A homogenized strain energy is utilized to formulate a

material design problem whose solution can be inter-

preted as the topology of a discrete structure. The

method is limited with respect to the choice of the objec-

tive function. This problem can be alleviated using

heuristic variations of the homogenization method like

the solid isotropic microstructures with penalization

method (SIMP) [3]. Here the density distribution of
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the material is modified until a quasi-discrete structure is

achieved.

The evolutionary structural optimization (ESO) of

Xie and Steven [25,26] is a simple method based on

so-called rejection criteria which are used to remove

inefficient material in a structure. Despite the notion

‘‘evolutionary’’ the method has no biologically inspired

steps based on the Darwinian mutation and selection

principle and should not be mixed up with evolution

strategies or genetic algorithms, see Section 2.2. As the

homogenization method ESO is not capable to be used

with arbitrary objective functions.

In order to overcome the above-mentioned flaws sto-

chastic topology optimization has gained interest in the

last years [2,9,10,18,19].

Stochastic optimization is a very general concept. The

respective methods do not have any demand regarding

the formulation of the objective function. The stochastic

topology optimization methods are not restricted to

mechanical problems but can be used with arbitrary

objective functions, see e.g., the applications to the opti-

mization of artificial neural networks or the digital filter

design in [14].

In contrast to the classical approaches, the alterna-

tive methods described in this paper allow also for inser-

tion of bars (see [21, p. 43–44]). This is of importance,

because mechanical structures from engineering practice

may have many joints and starting from highly con-

nected structures can be computationally demanding.

A completely connected initial structure is only one of

many possible starting points in the search space. Al-

most arbitrary initial structures (for example structural

models, which have emerged from a conventional design

process) can be used if the structural variations allow for

substantial structural rearrangements, that means addi-

tion and deletion of bar elements. The relevance of this

feature increases with the number of joints if the assem-

bling of the stiffness matrix is supported by appropriate

data structures.

2. Stochastic optimization

2.1. Simulated annealing

In a famous paper Metropolis et al. [16] introduced

a method, which allows the computational simulation

of physical systems in thermal equilibrium. Kirkpatrick

et al. [12] have taken up the Metropolis approach and

adapted to the solution of complex optimization prob-

lems (simulated annealing method, SA). The idea behind

simulated annealing is based on the close correspon-

dence of energy in statistical mechanics and cost or sys-

tem quality in optimization problems. Since physical

systems can be forced into the energetic ground state

by a careful annealing process, an optimization problem

can be driven towards the global optimum by adjusting

a parameter, which can be considered as the counterpart

to the physical temperature. Determining the proper

annealing (cooling) schedule for a given problem can

be demanding.

2.2. Evolution strategies

In his pioneering evolution theory Darwin gave as

the reason for the development of species the principle

survival of the fittest. This principle states that only by

natural selection an optimal adaptation of a particular

species to the environment and living conditions could

occur.

It is obvious to use such a selection principle as the

basis for optimization methods (evolutionary algo-

rithms). For this purpose the variable vector of the opti-

mization problem can be interpreted as an individual of

an artificial population and the selection can take place

on the basis of the associated objective function value.

The objective function plays the role of the fitness in a

simulated environment and the adaptation to these con-

ditions leads to the solution of the underlying optimiza-

tion problem.

The formulation and algorithmic realization of such

evolutionary algorithms goes back to Rechenberg [20]

and Schwefel [23,24] who developed the so-called evolu-

tion strategies (ES), and Holland [11] who laid the foun-

dation for the genetic algorithms (GA). Since in a

previous study [2] GA methods turned out to be not very

efficient for the problems at hand they have not been

given further attention in this paper. In the following

a short description of the evolution strategies will

be given.

Two main variants of the evolution strategies are in

use. Both assume that in each iteration step a population

of l parental vectors exists. Then, with the aim of gener-

ating an offspring vector, a parental vector is chosen ran-

domly and modified by adding a random variation

(mutation). This procedure is repeated until k offsprings

have been created. In the (l + k)-ES an intermediate

population of the l + k individuals is the basis for the

selection of the l best vectors to be parents of the next

iteration. In the so-called (l,k)-ES, the l best vectors

will be taken out of the k offsprings only (k > l).
Further biological phenomena like recombination,

migration or the competition between populations can

be easily included in such an evolutionary optimization

concept.

There is an extensive literature on the theoretical

background and recommendations concerning the prac-

tical application of evolution strategies (see e.g.,

[1,7,24]). However, these theoretical investigations are

mainly devoted to continuous problems. Relatively few

results concerning the strategy parameters exist with

respect to discrete problems. On the other side it is
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