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a b s t r a c t

In this work, random homogenization analysis for the effective properties of composite materials with
unidirectional fibers is addressed by combining the equivalent inclusion method with the Random Factor
Method (RFM). The randomness of the micro-structural morphology and constituent material properties
as well as the correlation among these random parameters are fully considered, and stochastic effective
properties including effective elastic tensor and effective elastic properties together with their correlation
are sought. Results from the RFM and the Monte-Carlo Method (MCM) are compared, and the impact of
randomness and correlation of the micro-structural parameters on the random homogenized results are
investigated by the two methods. Finally, the correlation coefficients of the effective properties are
obtained by the MCM. The RFM is found to deliver rapid results with comparable accuracy to the
MCM approach.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Heterogeneous materials [1] including, e.g., composite and
functionally graded materials are increasingly used in different
fields [2,3], consisting of the aerospace, automotive and civil con-
struction industries, whereby they are designed and employed to
satisfy special functional requirements that conventional homoge-
neous materials cannot meet. For heterogeneous materials under
sustained mechanical and thermal stresses, micro-structural fea-
tures exert an important and often controlling influence on the
overall performance by affecting several mechanical properties
[4]. Thus current attempts to increase strength, stiffness, ductility
and durability of materials and structures require a full apprecia-
tion and characterization of their micro-structural properties [5].

Homogenization techniques are widely used to compute the
effective properties of heterogeneous materials based on the

knowledge of geometry and material properties of their micro-
structure. These techniques are both of computational and analyt-
ical nature. For analytical techniques, early approximations for this
purpose were presented by Voigt [6] and Reuss [7]. Later, key
advances were reached with the work of Eshelby [8] and Hashin
and Shtrikman [9]. Additional classical models to estimate the
effective properties included the self-consistent method, the dilute
distribution method, the Mori and Tanaka method [10] and many
others, see e.g. Aboudi [11], Mura [12] and Nemat-Nasser and Hori
[13]. Computational technique based on multiscale finite element
method was developed as well, see e.g. Zohdi and Wriggers [14],
Stroeven et al. [15], and Vel and Goupee [16], and Temizer and
Wriggers [17].

It is well known that geometry and material parameters can
never be determined with absolute certainty [18]. This recently
motivated an increasing attention to random heterogeneous mate-
rials, including, e.g., composite materials with uncertainty in the
location/shape of the reinforcement and/or in the pore/particle
spatial distribution in the matrix as well as in the mechanical prop-
erties of the components. Many progresses about random homog-
enization were reached with the work of many scholars. Kamiński
and Szafran [19] applied the generalized stochastic perturbation-
based finite element method to computational modeling of
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random interface defects in composite materials, where the num-
ber of defects as well as their radii and the Young modulus of the
matrix were taken as Gaussian random variables. Sakata and co-
workers [20] presented a perturbation-based stochastic homogeni-
zation analysis method for the thermal expansion coefficient of a
fiber-reinforced composite material. Feng and Li [21] proposed a
robust and efficient algorithm based on nonlinear transformation
of Gaussian random fields to reconstruct two-phase composite
materials with random morphology, according to given samples
or given statistical characteristics. Milani and Lourenço [22] pre-
sented a kinematic rigid-plastic homogenization model for the
limit analysis of masonry walls arranged in random texture and
out-of-plane loaded, where blocks constituting a masonry wall
are supposed infinitely resistant with a Gaussian distribution of
height and length. Xu et al. [23] formulated a Green-function-
based multiscale method to decompose a boundary value problem
with random microstructure into a slow scale deterministic prob-
lem and a fast scale stochastic one by employing generalized var-
iational principles.

Despite the progress summarized above, however, analytical
homogenization or computational homogenization of heteroge-
neous materials with uncertainty in microstructure still remains
an enormous challenge. The existing models mainly address the
randomness of the micro-structural morphology [14,16,17,21–23]
or sometimes of several material properties [19,20,24]. Moreover,
they do not include the correlation of the micro-structural proper-
ties or the morphology parameters as well as the correlation
among the random homogenized results. Compared with the ran-
domness of micro-structural parameters and homogenized results,
the correlation existing in random micro-structural parameters or
homogenized results is very important as well since sometimes an
unknown parameter or property can be estimated to a certain
extent starting from the known parameter or property according
to their correlation.

The goal of this work lies in tackling the stochastic homogeniza-
tion problem of composite material by a convenient approach
when fully considering the uncertainty including the randomness
and correlation in microstructure. Herein, the Random Factor
Method (RFM) proposed in [25,26] is extended to the computation
of the random homogenized effective properties of a unidirectional
fiber reinforced polymer (FRP) composite with orthotropic behav-
ior at the macroscale which is a classic model in composite mate-
rial. The stochastic macroscopic effective properties consisting of
effective elastic tensor EH and effective elastic properties (Young’s
elastic moduli EH

x ; EH
y ; EH

z , Shear elastic moduli GH
yz; GH

zx; GH
xy as well

as Poisson ratios mH
yz; mH

zx; mH
xy derived from EH) of FRP composites

are formulated by combining the analytical homogenization
approach with the RFM, whereby the randomness of the material
properties and morphology parameters of the two constituents
as well as the correlation among these random variables are simul-
taneously taken into account. Moreover, all results obtained from
the RFM are compared with those from Monte-Carlo Method
(MCM) in order to confirm the validity of the proposed method.
Finally, the correlation in the macroscopic effective properties is
acquired by the MCM.

2. Stochastic homogenization of macroscopically orthotropic
composite media

2.1. Homogenized effective properties for orthotropic materials

The equivalent inclusion method is one of the effective methods
for estimating the homogenized elastic tensor of composite mate-
rials. For a unidirectional fiber reinforced composite material, a for-
mula from the Mori–Tanaka theory [10] based on the equivalent

inclusion idea can be used for the estimation. According to this for-
mula, the homogenized effective elastic tensor EH is computed as:

EH ¼ EmX�1Y ¼
EH
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where Em and Ef are respectively the elastic tensor of the matrix
material and fiber inclusions, Vf is the volume fraction of the fibers,
S is the Eshelby matrix and I is the 6 � 6 unit matrix. Assuming both
constituents (matrix and fiber) are isotropic materials, their elastic
matrix can be expressed as
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where e and m are respectively the Young’s modulus and the Poisson
ratio of the material. In the following, these properties will be
denoted as em and mm for the matrix, and ef and mf for the fibers. The
Eshelby matrix S is a 6 � 6 matrix and depends on the shape of the
inclusions. In case of long continuous unidirectional fibers the non-
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2 �, where a1 and a2 are the cross-sectional

fiber dimensions, see Fig. 1 [24], where a3� a1, a2.
Several types of industrial materials can be regarded as an iso-

tropic or orthotropic material, and the common material properties
such as Young’s modulus or Poisson ratio for each direction will be
used for evaluation of material characteristics. The homogenized
effective elastic properties of isotropic or orthotropic composite
materials can be computed by the homogenized compliance. For
orthotropic materials, e.g. the composite shown in Figs. 1 and 2
[24], the homogenized elastic properties can be computed as
follows:

Fig. 1. An fiber inclusion.
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