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a b s t r a c t

The identification of excitations on plates by an inverse method using local Finite Element modeling is
studied. A dynamic condensation is proposed in order to eliminate Degrees Of Freedom not directly mea-
surable like rotations. Before the condensation, the Craig–Bampton method can be optionally used to
reduce the model (decrease of both computational and measurement times). Regularization based on
the Tikhonov method and a double inversion of the operator is performed. After a numerical study of
the accuracy of each step for different excitations, an experimental validation finally proved that it
was both possible to locate accurately a shaker over a wide range of frequency and to estimate the ampli-
tude of the injected force. Both dynamic condensation and Craig–Bampton reduction were used. Even if it
induces some imprecision, the Craig–Bampton reduction was found to be a fundamental step to reduce
both computational cost and the measurement effort which were the main problems to address in such
an approach.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Many vibroacoustic studies use Finite Element modeling in
order to predict the dynamic behavior of structures. Current soft-
ware and computing resources allow engineers to create numerical
models that can be applied for more complex structures and for
higher frequencies. In practice, the end-user must define the geom-
etry of the structure, the material characteristics and the boundary
conditions and excitations. The first two types of data are usually
provided by the designers and are refined by experimental updat-
ing, whereas boundary conditions and excitations are less well-
defined. Prediction accuracy is then affected by poor knowledge
of the latter two types of data. In terms of experimental updating,
the purpose of this paper is to define an experimental approach to
identify excitations on the basis of a model and accessible mea-
surements. The aim is to reverse the usual application of the model
by calculating sources from the measurements of their effects. This
is exactly the same philosophy as that used in the Force Analysis
Technique (FAT) [1], also known as the RIFF method (from the
French definition ‘‘Résolution Inverse Filtrée Fenêtrée’’), developed
several years ago for simple structures like beams [1–3], plates [3]

and shells [4,5]. In the Force Analysis Technique, the calculation of
the exciting force distribution is obtained by using the analytic
equation of motion, where spatial derivatives are approximated
by finite differences. The principal interest of this method is the
fact that the equation of motion is verified locally only and does
not have to be solved. In other words, knowledge of the equation
of motion for which measurements are performed is sufficient.
Boundary conditions and effects due to excitations outside the
measurement area can be ignored. The FAT is also highly sensitive
to errors in measurement data, so that a regularization process has
been developed through low-pass wavenumber filtering. In [6], the
authors presented an equivalent regularization, using a double
inversion of the operator of the structure, where the second inver-
sion is regularized by the classic Singular Value Decomposition.
The principal limitation of the FAT is the use of an analytic
equation of motion. Applications are restricted to test benches
[2,7] or to cowls [3] which can be modeled with the Love–Kirchhoff
Theory [8].

The aim of this study is to adapt the FAT for application to more
industrial cases where the use of Finite Element Modeling is
unavoidable. Other authors have used Finite Element (FE) models
to perform force identification, but with different aims. Busby devel-
oped an approach using a Tikhonov regularization and a static con-
densation of rotations on beams in the time domain, with
assumptions on the force locations [9]. Ibrahim and Sestieri used a
Finite Element model of a set of beams using dynamic condensation,
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by keeping the locations of a priori forces as master Degrees Of Free-
dom (DOF) [10]. Corus and Balmès used a Finite Element approach to
tune their model with force prelocalization and a projection of the
model in the truncated modal basis of the complete structure
[11,12].

The approach presented in the present paper is aimed at quan-
tifying and localizing the forces from an FE model with as few
assumption as possible. The first approach was developed on
beams [13,14], showing the possibility of using a Finite Element
approach locally (on only part of the structure) with free boundary
conditions. The exciting forces inside the area studied are well-
identified as are the coupling forces with the rest of the structure
at the boundaries. One of the differences with the FAT is that it
identifies the coupling forces at the limits through the use of free
boundary conditions in the inverse problem. It is necessary to
reduce the model in order to use such a method for 2D or more
complex structures. Indeed, experiments and calculations can last
too long when the number of DOF starts getting very high, making
it necessary to study the effects of reductions.

In this paper, after the presentation of the general principle of
this inverse problem, a dynamic condensation is proposed in order
to eliminate rotations which are considered as non accessible DOF.
To further reduce the number of DOF and accelerate computing
time, we then propose performing a Craig–Bampton reduction
prior to the dynamic condensation. This add-on is presented in this
paper as an option. As in [13], the regularization method chosen is
performed by a double inversion in which the Tikhonov regulariza-
tion is applied to the second inversion. After describing all these
steps in the first section, the numerical simulations are presented
in the second section. The advantage of the simulations is that they
permit testing the principle of the inverse method using exact data,
and testing the regularization using noisy data. Finally, the third
section is devoted to the experimental validation of the method.
The setup corresponds to an L-Shaped Plate with arbitrary bound-
ary conditions and excited by a shaker. The location is clearly iden-
tified with and without the Craig–Bampton option and the force
spectrum identified with the Craig–Bampton option appears com-
parable with the direct measurement of the exciting force.

2. Methodology development

2.1. Illustration of the principles of the approach

The objective of this subsection is to provide an illustration of
the method and of the effects of its idealizing assumptions on
the obtained results. A flexural plate of thickness h is considered
to be in harmonic motion at an angular frequency x. Its material
properties are q, mass density, g, damping factor for linear hyster-
etic damping model and E, the Young’s modulus modeling local
stiffness. In the following, the plate is in the x

!
; y
!� �

plane. In order
to model the local behavior, 3D-geometry shell elements with a
Kirchhoff formulation [15–17] are used. Normals to the shell ele-
ments are defined along theþ~z axis. DOF of the ith node are limited
to:

� the transverse translation wi along þ~z (associated with the force
F i),
� the rotation hx

i around þ~x (associated with a moment Mx
i ),

� the rotation hy
i around þ~y (associated with a moment My

i ).

The matrix system describing the FE model of a given structure
can be written as [15]:

�x2Mþ ð1þ jgÞK
� �

V ¼ LV ¼ A; ð1Þ

where j is the imaginary number, M symbolizes the mass matrix of
the structure, K is the dynamic stiffness matrix of the structure, L is
the Finite Element operator of the structure, V is the vector of
responses containing N nodal displacements and 2N nodal rotations
and A is the vector of mechanical actions containing N nodal forces
F and 2N nodal moments M.

The mass and stiffness matrices of the structure are computed
using the assembly of elementary matrices evaluated by the inter-
polation of the displacement field over the elementary domain
using quadratic shape functions [15].

For plates and shells, standard elementary topologies are based
on quadrangles (quad4 elements) and triangles (tria3 elements). In

Nomenclature

Operators, vectors and matrices related to the original Finite Element
(FE) model

M FE Mass matrix of the structure
K FE Stiffness matrix of the structure
L FE operator depicting the dynamics of the free structure
V FE vector of the nodal vibratory data (translations and

rotations)
A FE vector of the exterior nodal mechanical actions

(forces and moments)
F FE vector of the exterior nodal forces
M FE vector of the exterior nodal moments

Operators and vectors after Craig–Bampton reduction
Lr reduced FE operator
Vr reduced FE vector of the nodal vibratory data
Ar reduced FE vector of the exterior nodal mechanical ac-

tions

Operators and vectors after dynamical condensation of non measured
Degrees Of Freedom

Lc condensed FE operator
Vc condensed FE vector of the nodal vibratory data

Fc condensed FE vector of the exterior nodal mechanical
actions

Operators and vectors after Craig–Bampton reduction and dynamical
condensation of non measured Degrees Of Freedom

Lrc reduced then condensed FE operator
Vrc reduced then condensed FE vector of the nodal vibratory

data
Frc reduced then condensed FE vector of the exterior nodal

mechanical actions

Operators and vectors after regularization
Lctikh regularized pseudo-inverse of the inverse of Lc

Fctikh vector of the identified forces with dynamical condensa-
tion of the non measured Degrees Of Freedom (regular-
ised solution)

Lrctikh regularized pseudo-inverse of the inverse of Lrc

Frctikh vector of the identified forces with Craig–Bampton
reduction and dynamical condensation of the non mea-
sured Degrees Of Freedom (regularized solution)
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