
Evaluation of massively parallel linear sparse solvers on unstructured
finite element meshes

Seid Koric a,b,⇑, Qiyue Lu a, Erman Guleryuz a

a National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 1205 W. Clark St., Urbana, IL 61801, USA
b Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W. Green St., Urbana, IL 61801, USA

a r t i c l e i n f o

Article history:
Received 26 November 2013
Accepted 12 May 2014
Available online 11 June 2014

Keywords:
Sparse linear solvers
Direct and iterative methods
High performance computing
Parallel Speedup
Finite element method
Unstructured mesh

a b s t r a c t

The performance of massively parallel direct and iterative methods for solving large sparse systems of
linear equations arising in finite element method on unstructured (free) meshes in solid mechanics is
evaluated on a latest high performance computing system. We present a comprehensive comparison
of a representative group of direct and iterative sparse solvers. Solution time, parallel scalability, and
robustness are evaluated on test cases with up to 40 million degrees of freedoms and 3.3 billion nonzeros.
The results show that direct solution methods, such as multifrontal with hybrid parallel implementation,
as well as new hybrid adaptive block factorized preconditioning iterative methods can take a full advan-
tage of a modern high performance computing system and provide superior solution time and parallel
scalability performance.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Solving linear system of equations:

Ax ¼ b ð1Þ

lies at the heart of many problems in computational science and engi-
neering and is responsible for 70–80% of the total computational
time. In many cases, particularly when discretizing continuous solid
mechanics problems with implicit finite element method, the associ-
ated matrix A is sparse, symmetric and positive definite (SPD). Linear
problems are solved with a single solution of Eq. (1). Within each
quasi-static time step of nonlinear problems, however, a system of
nonlinear equations is linearized and solved with a Newton–Raphson
(NR) iteration scheme [1,2], which requires several linear solver
solutions of global equilibrium iterations (subscript i) as follows:

KtþDt
i�1

h i
DutþDt

i�1

� �
¼ RtþDt

i�1

n o
ð2Þ

where DutþDt
i�1

� �
is the incremental change to the solution vector

(displacements in mechanical problems), and RtþDt
i�1

n o
is the residual

error vector. A linear solver is used to solve Eq. (2) for DutþDt
i�1

� �
,

which is used to update the solution vector in Eq. (3), until conver-
gence is achieved everywhere at time t + Dt (i.e., when the update
vector is sufficiently small).

utþDt
i

� �
¼ utþDt

i�1

� �
þ DutþDt

i�1

� �
ð3Þ

The tangent stiffness matrix [Kt+Dt] is defined in Eq. (5) from the
consistent tangent operator, also known as the material Jacobian,
[J], which is defined in Eq. (4) for mechanical problems, taking
DêtþDt as a guessed mechanical strain increment, based on the
current best displacement increment.

J ¼ @DrtþDt

@DêtþDt
ð4Þ

½KtþDt� ¼
Z

V
½B�t½J�½B�dV ð5Þ

where [B] = o[N]/ox contains the spatial derivatives of the element
shape functions [N].

For more than three decades, there has been considerable inter-
est in the development of numerical algorithms for the solution of
large sparse linear systems of equations and their efficient parallel
implementation on high performance computing systems. The
algorithms may be grouped into two broad categories: direct
methods and iterative methods.

Iterative method algorithms repeatedly apply a sequence of
operations at each step attempting to improve upon its current
approximation to a solution. Krylov subspace methods are an

http://dx.doi.org/10.1016/j.compstruc.2014.05.009
0045-7949/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: National Center for Supercomputing Applications,
University of Illinois at Urbana-Champaign, 1205 W. Clark St., MC-257, Urbana, IL
61801, USA. Tel.: +1 (217) 265 8410.

E-mail addresses: koric@illinois.edu (S. Koric), qiyuelu1@ncsa.illinois.edu
(Q. Lu), guleryuz@illinois.edu (E. Guleryuz).

Computers and Structures 141 (2014) 19–25

Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate /compstruc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruc.2014.05.009&domain=pdf
http://dx.doi.org/10.1016/j.compstruc.2014.05.009
mailto:koric@illinois.edu
mailto:qiyuelu1@ncsa.illinois.edu
mailto:guleryuz@illinois.edu
http://dx.doi.org/10.1016/j.compstruc.2014.05.009
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc


important class of iterative methods. This class includes the
Conjugate Gradient (CG) method [3,4] and it variants, which is
robust for SPD matrices. In solving the large systems in finite
element method, combining a Krylov subspace method such as
CG with a preconditioner is essential to accelerate convergence
rate and avoid divergence of solution especially for ill-conditioned
linear systems.

The most widely used direct methods [5], are variants of Gauss-
ian elimination and involve the explicit factorization of the system
matrix A (or, more usually, a permutation of A) into a product of
lower and upper triangular matrices L and U. In the symmetric
case, U = DLT, where D is a block diagonal matrix with 1 � 1 and
2 � 2 matrix blocks. Ordering phase reorders the rows and
columns such that the factors have minimal fill-in. Symbolic
factorization phases analyze the matrix structure to determine an
optimal pivoting sequence and strategy for optimal factorization.
Forward elimination (factorization) followed by backward substi-
tution completes the solution process for each given right-hand
side b. The main advantages of direct methods are their generality
and robustness.

For some tough (ill-conditioned) linear systems that arise in a
number of application areas, direct methods are currently the only
feasible methods. For other problems, finding and computing a
good preconditioner for use with an iterative method can be com-
putationally more expensive than using a direct method. In case of
nonlinear problems, the matrix structure does not change for the
linear solvers within each NR nonlinear iteration in Eq. (2). Order-
ing and symbolic factorization phases are performed only for the
first NR iteration for each step. For every subsequent nonlinear
iteration, only the factorization and backward-solve need to be
called with direct solvers.

A significant weakness of direct methods, however, is that the
matrix factors are often significantly denser than the original
matrix, and for large problems such as those that arise from dis-
cretization of three dimensional partial differential equations,
insufficient memory for both forming and then storing the factors
can prevent the use of direct methods. The limitation on CPU and
memory requirements had made the use of direct solvers uneco-
nomical in the past, resulting in broad use of iterative solvers.
The recent rise of terascale and especially petascale computational
resources, however, as well as the development of multifrontal [6]
and supernodal techniques [7], has greatly increased the efficiency
and practicality of using direct solvers for large sparse systems.

2. Solvers, test cases, and computing platform

Key features of the solver libraries used in study are listed in
Table 1. Two iterative libraries were used in this work: PETSc [8]
and Hypre [9], Both provide parallel Message Passing Interface
(MPI) routines for solving large sparse linear systems. PETSc, short-
hand for the ‘‘Portable, Extensible Toolkit for Scientific computa-
tion,’’ provides a variety of preconditioners and Krylov subspace
solvers. Additive Schwarz methods (ASM) [10] derive a precondi-
tioning by decomposing the problem domain into a number of
possibly overlapping subdomains, (approximately) solving each

subdomain, and summing the contributions of the subdomain
solutions. Block-Jacobi preconditioning (BJacobi) [11] uses diago-
nal matrix blocks instead of diagonal matrix elements. Incomplete
factorization (IC) [12] computes an incomplete factorization LU or
Cholesky of the coefficient matrix and requires a solution of lower
and upper triangular linear systems in every CG iteration. Parallel
sparse approximate inverse (Parasails) [13], uses least-squares
(Frobenius norm) minimization to compute a sparse approximate
inverse. In addition, Hypre provides multigrid preconditioning for
CG, boomerAMG [14], that constructs their multilevel hierarchy
of solutions directly from the matrix coefficients, and they are sim-
ply subsets of unknowns without any geometric interpretation.
Finally, a novel adaptive block factorized sparse approximate
inverse nested with incomplete Cholesky (ABF-IC) preconditioning
[15] is tested as a standalone CG code too.

In addition to iterative solvers, three direct solver libraries were
tested. The MUMPS (MUltifrontal Massively Parallel Solver)
package is designed and developed by Amestoy et al. [16], and is
a multifrontal code for solving both symmetric and unsymmetric
systems and uses MPI at distributed memory systems. The Watson
Sparse Matrix Package (WSMP) [17] was developed by Anshul
Gupta of the IBM T. J.Watson Research Center. The package
includes direct modified multifrontal solvers for both symmetric
and unsymmetric systems. WSMP was primarily developed as a
highly scalable parallel code and has a hybrid implementation with
MPI and P-threads. SuperLU_DIST [18] is distributed memory (MPI)
parallel version of the SuperLU family of solvers developed by
Xiaoye (Sherry) Li of the University of California at Berkley. It is
based on supernodal right looking LU factorization and is designed
for general unsymmetric systems. Unlike symmetric solvers in
MUMPS or WSMP, it computes and stores separate lower and
upper triangular factors. In practice, it would not be typically used
for SPD systems, which are the focus of this work, but we have
included it to compare scalability of various direct factorization
algorithms. All direct solvers in this study are in-core solvers; all
factorization and solution data are kept in the computer’s memory
rather than written to temporary disk files. This makes these codes
less dependent on the performance of file system, but also prone to
failures if sufficient memory is not available.

The performance of preconditioned conjugate gradient and
multigrid solvers in plane elasticity was compared by Jouglard
et al. [19]. The difference between general sparse block solver
and multifrontal solver was studied by Damhaug et al. [20]. Kilic
et al. [21] showed that direct solvers provide faster solution then
iterative solvers in implicit structural dynamics with ill-conditioned
coefficient matrices. Two distributed memory solvers, MUMPS and
SuperLU, were evaluated by Amestoy et al. [22]. Gould et al. [23]
assessed the performance of direct solvers for symmetric matrices.
The solvers were executed on a single processor for matrices of
order greater than 10,000. Parallel performance of both direct
and iterative solvers on proprietary IBM HPC platforms with matri-
ces of 1–2 million unknowns were studied by Gupta et al. [24].
There is no general comparison of solvers on modern multi-core
HPC clusters with many-million equations originating from
practical 3D FEA discretization reported to date.

CAD models of solid geometries are commonly used to design
parts and assemblies and create their corresponding part drawings
for manufacturing. Conveniently, these models can be imported
into FE packages for subsequent numerical analysis. While struc-
tured meshing with hexahedral elements exhibit higher conver-
gence rate and accuracy, it frequently requires user intervention
and is labor intensive. Automatic unstructured mesh generation
with tetrahedral elements is quick and often preferred under a
tight industrial project schedule. In biomechanics, however, finite
element meshes generated from computed tomography (CT) [25]
are almost always consisting of tetrahedral elements due to

Table 1
Key features of solver libraries.

Solver library Direct/iterative Algorithm Parallel implementation

Mumps Direct Multifrontal MPI
SuperLU Direct Supernodal MPI
WSMP Direct Multifrontal Hybrid (MPI/Pthreads)
ABF-IC Iterative PCG/(ABF-IC) MPI
Hypre Iterative PCG/(ParaSails) MPI
PETSc Iterative PCG (Bjacobi) MPI

20 S. Koric et al. / Computers and Structures 141 (2014) 19–25



Download English Version:

https://daneshyari.com/en/article/510748

Download Persian Version:

https://daneshyari.com/article/510748

Daneshyari.com

https://daneshyari.com/en/article/510748
https://daneshyari.com/article/510748
https://daneshyari.com

