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a b s t r a c t

The simulation of guided waves in plate structures and cylinders coupled to infinite fluids is addressed.
The approach is based on the Scaled Boundary Finite Element Method. Only a straight line is discretized
that represents the through-thickness direction or the radial direction. The surrounding fluid is accounted
for by employing a damping boundary condition that is based on the analytical description of the radi-
ation impedance. Since the radiation impedance is a function of the wavenumber in the waveguide, an
iterative solution procedure is applied. The algorithm is highly efficient while the results are in agree-
ment with the Global Matrix Method.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Elastic guided waves can be excited in thin-walled structures,
i.e. when the thickness of the solid is in the order of the wavelength
of longitudinal and shear waves in the material under consider-
ation. In the ultrasonic range, guided waves offer a large variety
of applications in non-destructive testing [1–3], structural health
monitoring [4–6] or material characterization [7–10]. On a very
different scale, similar phenomena occur e.g. in soil layers [11,12]
or in reservoirs adjoining dams [13] and are considered in geo-
physics and earthquake engineering [14]. Due to their complex
propagation behavior, numerical methods are often employed to
model guided waves in a given structure. A crucial step in the anal-
ysis of guided waves is the computation of dispersion curves, i.e.
the frequency-dependent phase and group velocities of propagat-
ing modes. To fulfill this task, numerous approaches that are
optimized for particular structures have been developed over the
last decades. For homogeneous plates and cylinders, analytical
solutions as derived by Lamb [15] and by Pochhammer [16] and
Chree [17], respectively, can be obtained. If the plate or pipe con-
sists of several layers, the Global Matrix Method (GMM) [18] that
is based on the analytical description of the reflection and trans-
mission at each interface, is often employed. The GMM can easily
be applied to simple structures consisting of few layers. Then

again, the solution becomes very cumbersome if many layers are
present or if material damping is considered.

Contrary to the analytical models, different numerical
approaches have been applied, most of them being based on the
Finite Element Method. A full three-dimensional Finite Element
model is capable of describing waveguides of arbitrary shape and
material properties, but leads to very high computational costs
[19]. In geophysics, the Thin Layer Method (TLM) is widely used
[20,21]. It is based on a discretization of the through-thickness
direction of a two-dimensional structure, while the direction of
wave propagation is described analytically. The Semi-Analytical
Finite Element (SAFE) Method [22–25] uses the same concept for
the simulation of guided waves in the ultrasonic range. It has been
extended to three-dimensional waveguides by discretizing the
two-dimensional cross-section with traditional Finite Elements.

Recently, a particular formulation of the Scaled Boundary Finite
Element Method (SBFEM) [26,27] has been derived for the simula-
tion of guided waves. The SBFEM is a very general semi-analytical
method that can be utilized in a wide range of applications to
model bounded or unbounded domains in the frequency as well
as in the time domain [28–31]. Only the boundary of the computa-
tional domain is discretized in the finite element sense, while an
analytical formulation is used to scale the mesh in the interior of
the domain or towards infinity, respectively. This method has been
used to model guided wave propagation in the time domain very
efficiently [31]. Applying the concept of the SBFEM to the compu-
tation of dispersion curves [32–35] leads to a formulation that
shows similarities with the TLM and the SAFE methods, while
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different solution procedures are applied in order to enhance
efficiency [36]. Moreover, computational costs have been drasti-
cally reduced by employing spectral elements of very high order
[33,36].

For a long time it has been considered a major drawback of the
mentioned numerical approaches that the modeling of waveguides
in contact with an infinite solid or fluid medium is not straightfor-
ward. The most common attempts to address this problem are
based on absorbing regions [37–40], infinite elements [41,42],
perfectly matched layers [43,44] or non-reflecting boundaries
[45]. However, these techniques can raise high computational
costs, since they require the discretization of a significant part of
the surrounding medium. Moreover, the desired solutions of
guided wave modes have to be separated from unphysical modes
in the surrounding medium, which can be cumbersome. In a very
recent development, the Finite Element mesh of the waveguide is
coupled to a Boundary Element approach to describe a surrounding
fluid [46], leading to a nonlinear eigenvalue problem for the
wavenumbers. The Global Matrix Method is theoretically capable
of describing infinite media [18]. However, the solution of the
characteristic equation is difficult, since complex-valued roots
have to be computed due to the attenuation effect of the surround-
ing medium. Recently, an improved mode-tracing and root-finding
algorithm has been proposed [47]. It enhances the reliability by
utilizing the interval Newton method and algorithmic differentia-
tion but again leads to high computational costs.

In the SBFEM, the simulation of waveguides that are embedded
in an infinite solid medium has recently been addressed by
employing a simple dashpot boundary condition on the wave-
guide’s surface [48]. The boundary condition replaces the sur-
rounding medium by a damper and thus accounts for the leakage
of waves into the surrounding medium. Though the formulation
is approximate, it has been demonstrated that this approach yields
very accurate results for practical applications. The computational
costs are reduced by several orders of magnitude compared with
the application of absorbing regions, since the surrounding
medium is not discretized. For the same reason, the solution is
straightforward and the identification of propagating modes is
trivial.

If the surrounding medium is a fluid, the simple dashpot
approach cannot be applied in the same way. The reason is that
the effect of the surrounding fluid strongly depends on the direc-
tion of waves propagating into the fluid [49,50]. In the current
paper, an improved boundary condition that is based on the exact
radiation impedance [51–54] is employed. The formulation is valid
for perfect fluids, where viscosity is neglected and hence no shear
stresses occur in the surrounding medium. In case of plate struc-
tures, the boundary condition is similar to the simple dashpot
boundary with a correction that accounts for the direction of
propagation. For cylinders, an additional factor that consists of
the Hankel functions and accounts for the surface curvature, has
to be included.

While the derivation of the boundary conditions and their inte-
gration into the Scaled Boundary Finite Element equation is
straightforward, the solution of the resulting matrix equations is
not trivial. The boundary condition is a function of the unknown
wavenumber in the waveguide, thus an iterative solution proce-
dure is required. We propose a solution technique based on inverse
iteration [55], that has previously been applied in a different con-
text to compute a subset of modes in a waveguide in vacuum very
efficiently [36]. At each step of the iteration, the boundary condi-
tion is updated and the corresponding eigenvalue is improved until
a converged solution is obtained.

Results are presented for a plate and cylinder and the solutions
are compared with the commercial software disperse [56] that is
based on the Global Matrix Method.

2. Fundamental equations for waveguides in vacuum

The scaled boundary finite element formulation for guided
waves in elastic waveguides with stress-free surfaces has been
detailed in previous publications [31–36,57,58]. Only a very brief
summary of the required equations is presented here. Assuming
linear elastodynamics, the stresses r and displacements u in the
waveguide obey the governing equation [59]

LTrþx2qu ¼ 0 ð1Þ

with the differential operator

L ¼
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The frequency and mass density are denoted as x and q, respec-
tively. Stresses and strains are related through Hooke’s law with
the elasticity matrix D,

r ¼ ½rz rx ry sxz syz sxy�T ¼ De ð3Þ

The strains follow from the displacements as

e ¼ ½ez ex ey cxz cyz cxy�
T ¼ Lu ð4Þ

The current work focuses on plates and cylinders, where an exact
boundary condition can be derived analytically in order to model
the influence of the surrounding fluid. The geometries are presented
in Fig. 1. The plate is defined in a Cartesian coordinate system
ðz; x; yÞ, while the cylinder is formulated in cylindrical coordinates
ðz; h; rÞ. C denotes the plate surfaces and the side faces of the
cylinder, respectively. ri and ro are the inner and outer radius of
the cylinder. The guided waves are assumed to propagate in the
z-direction. The plate is of infinite length in x-as well as z-direction.
In case of cylinders, a complex Fourier series is employed in the
circumferential direction. Hence, for both plates and cylinders, only

(a)

(b)

Fig. 1. Discretization of a plate (a) and cylinder (b) using one element of higher
order. The element is defined in its local coordinate g. Both structures are assumed
to be of infinite dimension in the z-direction. Additionally, the plate is infinite in the
x-direction. C denotes the plate surfaces and the side faces of the cylinder,
respectively. ri and ro are the inner and outer radius of the cylinder.
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