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a b s t r a c t

The objective of this study is to improve the performance of the MITC3 shell finite element. The
Hellinger–Reissner (HR) variational principle is modified in the framework of the MITC method, and a
special approximated transverse shear strain field is proposed. The MITC3-HR shell finite element
improved by using the Hellinger–Reissner functional passes all the basic tests (zero energy mode test,
patch test, and isotropic element test). Convergence studies considering a fully clamped plate problem,
a sixty-degree skew plate problem, cylindrical shell problems, and hyperboloid shell problems demon-
strate the improved predictive capability of the new 3-node shell finite element.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Shell structures have been widely used in many engineering
applications, and the finite element method has been dominantly
adopted for the analysis of shells. Since the effectiveness of a shell
finite element analysis depends highly on the predictive capability
of shell finite elements, there is strong demand for the develop-
ment of more effective shell finite elements [1–3].

The kinematical behavior of shells is very complicated, espe-
cially as the shell thickness becomes smaller. Depending on shell
geometries, boundary conditions, and applied loadings, the asymp-
totic behavior can be dominated by membrane or bending actions
or a combination of both actions [3–10]. A reliable shell finite ele-
ment should provide accurate solutions irrespective of the compli-
cated asymptotic behaviors and the magnitude of the shell
thickness. However, it is extremely challenging to develop such
shell finite elements due to a locking phenomenon; that is, the
shell finite element becomes too stiff when the thickness is rela-
tively small in bending situations [1,11].

The MITC (Mixed Interpolation of Tensorial Components) meth-
od has been successfully used to develop shell finite elements to
reduce the locking effects [12–17]. The MITC4 quadrilateral shell
finite elements were first developed by Dvorkin and Bathe
[12,13]. The MITC9 and MITC16 quadrilateral shell finite elements
were later developed by Bucalem and Bathe [14]. In spite of the
fact that triangular elements are very useful for the mesh genera-
tion of arbitrary shell geometries, due to the relatively complicated
representation of triangular geometries in the element formula-
tion, the MITC method was recently applied to develop isotropic
triangular shell elements, MITC3 and MITC6, by Lee and Bathe [15].

The MITC3 triangular shell finite element shows much better
predictive capability than the displacement-based 3-node triangu-
lar shell finite elements and other 3-node isotropic triangular shell
finite elements [15,18]. However, the locking alleviation by MITC3
is not as large as that by MITC4; that is, the accuracy of the solu-
tions is not as good as that of the MITC4 quadrilateral shell finite
elements due to locking. This provided the motivation for this
work.

The purpose of this paper is to improve the MITC3 shell finite
element. With the help of the Hellinger–Reissner (HR) principle
[1], we additionally approximate the transverse shear strain fields
of the MITC3 shell finite element. The Hellinger–Reissner (HR)
functional has been used to alleviate locking in plate and shell fi-
nite elements [19,20]. The successful use of this method depends
on how the approximated transverse shear strain fields are con-
structed. We first modify the Hellinger–Reissner functional and
introduce a special approximated transverse shear strain field
based on rotated contravariant bases.

In the following sections, the MITC3 formulation is briefly re-
viewed and the Hellinger–Reissner principle for the shell finite ele-
ment is presented. We then propose a method that involves the use
of the Hellinger–Reissner functional to improve the MITC3 shell fi-
nite element, after which we explain how to construct the special
approximated transverse shear strain field. The basic test results
and well-established convergence studies numerically show that
the MITC3 shell finite element is successfully improved.

2. Formulation of the MITC3 shell finite element

The geometry of a 3-node continuum mechanics based triangu-
lar shell finite element is interpolated by Lee and Bathe [15] and
Lee et al. [18]
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where hi(r,s) is the 2D shape function of the standard isoparametric
procedure corresponding to node i,~xi is the position vector for node
i in the global Cartesian coordinate system, and ai and V

!i
n denote

the shell thickness and the director vector at node i, respectively;
see Fig. 1.

The displacement interpolation of the element is obtained by
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in which~ui is the nodal displacement vector in the global Cartesian
coordinate system, V

!i
1 and V

!i
2 are unit vectors orthogonal to V

!i
n

and to each other, and ai and bi are the rotations of the director vec-
tor V
!i

n about V
!i

1 and V
!i

2 at node i.
The linear terms of the displacement-based covariant strain

components are given by

eij ¼
1
2
ð~gi �~u;j þ~gj �~u;iÞ; ð3Þ

where
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@~x
@ri

; ~u;i ¼
@~u
@ri

with r1 ¼ r; r2 ¼ s; r3 ¼ t: ð4Þ

The covariant strain components can be expressed by

eij ¼ bij U
!
; ð5Þ

in which bij is the covariant strain–displacement matrix and U
!

is
the vector of nodal displacements and rotations, which include ~uk,
ak, and bk.

The base vectors of the shell-aligned local Cartesian coordinate
system are defined as follows

L
!

�t ¼
~gt

j~gt j
; L
!

�r ¼
~gs � L

!
�t

j~gs � L
!

�tj
; L
!

�s ¼ L
!

�t � L
!

�r: ð6Þ

The strains (eij) defined in the shell-aligned local Cartesian coordi-
nate are calculated from the covariant strain components through
the following relation,

eijð L
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In Eq. (7), the contravariant base vectors ~gj are given by

~gi �~gj ¼ dj
i with ~g1 ¼~gr; ~g2 ¼~gs; ~g3 ¼~gt ; ð8Þ

where dj
i is the Kronecker delta in mixed form.

The strain vector defined in the shell-aligned local Cartesian
coordinate system from the displacement-based shell formulation
is

~e ¼ BU
!
; ð9Þ

where~e ¼ ½ e�r�r e�s�s 2e�r�s 2e�s�t 2e�r�t �T .
In the formulation of the MITC3 shell finite element, the covar-

iant in-plane strain field is calculated by the displacement-based
triangular shell formulation in Eq. (3) and the MITC method is only
applied to substitute the covariant transverse shear strain field
[15]. The assumed covariant transverse shear strain components,
which are spatially isotropic, are given by

~ert ¼ eð1Þrt þ cs; ~est ¼ eð2Þst � cr; ð10Þ

where c ¼ eð2Þst � eð1Þrt � eð3Þst þ eð3Þrt and, at the tying points, eðnÞrt and eðnÞst

are calculated from Eq. (3), see Fig. 2.
The assumed covariant transverse shear strain components of

the MITC3 element can also be expressed by

~eij ¼ ~bij U
!
: ð11Þ

The covariant strains of the MITC3 shell finite element are trans-
formed to the strains defined in the shell-aligned local Cartesian
coordinate system ð L

!
�r ; L
!

�s; L
!

�tÞ
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!

with ~eM ¼ eM
�r�r eM

�s�s 2eM
�r�s 2eM

�s�t 2eM
�r�t

� �T
: ð12ÞFig. 1. A 3-node triangular continuum mechanics based shell finite element.

Fig. 2. Tying positions for the transverse shear strain of the MITC3 triangular shell finite element. The constant transverse shear strain condition is imposed along its edges.
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