

SIMD Acceleration for HEVC Encoding on DSP
Yongfei Zhang1*, Rui Fan2, Chao Zhang1, Gang Wang1, and Zhe Li3

1 Beijing Key Lab of Digital Media, School of Computer Science and Engineering, Beihang University, Beijing, China, 100191
2 China Academy of Electronic and Information Technology, Beijing, China, 100041

3 Shandong Province Key Laboratory of Wisdom Mine Information Technology, Shandong University of Science and Technology, Qingdao
China, 266590

*Corresponding Author: Yongfei Zhang (E-mail: yfzhang@buaa.edu.cn Tel: +86-1082314108)

Abstract— As the new generation video coding standard,
High Efficient Video Coding (HEVC) significantly improves the
video compression efficiency, which is however at the cost of a
far more computational payload than the capacity of real-time
video applications and general purpose processors. In this paper,
we focus on the SIMD-based fast implementation of the HEVC
encoder over modern TI Digital Signal Processors (DSPs). We
first test the DSP-based HEVC encoder and indentify the most
time-consuming encoding modules. Then SIMD instructions are
exploited to improve the parallel computing capacity of these
modules and thus speed up the encoder. The experimental
results show that the proposed implementations can significantly
improve the encoding speed of the DSP-based HEVC encoder,
with a speedup ratio of 8.38-87.32 over the original C-based
encoder and 1.59-6.56 over o3-optimization enabled encoder.

Index Terms— HEVC, Encoder, DSP, SIMD1

I. INTRODUCTION

High Efficiency Video Coding (HEVC)[1], the latest video
compression standard developed by the joint collaborative
team on video coding (JCTVC), can significantly improve the
coding performance compared its predecessor H.264/AVC[2],
which is however achieved at a much improved
computational cost of up to 2-10 times higher computational
complexity, which makes it quite difficult to apply in real-
time video applications[3].

Considering the high coding efficiency and pervasive
applications of HEVC, low-complexity thus low-power-
consumption HEVC encoder/decoder is urgently needed [3-6].
Besides plenty of algorithm-level optimizations for the
encoding modules have been proposed to speed up either the
encoder or the decoder [4-6], much attention has also been
paid on the code/instruction level optimization to further and
more significantly reduce the computational complexity[7-12].

Since HEVC decoder is much less computational intensive
than the encoder, there are many literatures reporting the
decoder implementations for HEVC, either on general
purpose processor CPU/GPUs [7-10], FPGAs[11] or digital
signal processors[12-13]. However, few research has been
conducted on the code/instruction level optimization
implementation for the more important and time-intensive
HEVC encoders [14-17], most of which are on CPUs/GPUs.

This work was partially supported by the National Key R&D Program of
China (Grant No.2016YFC0801001), the NSFC Key Project (No. 61632001)
and the National Natural Science Foundation of China (No 61502278,
61772054). This paper is partially done when Rui Fan and Zhe Li were with
Beijing Key Lab of Digital Media, School of Computer Science and
Engineering, Beihang University, Beijing, China, 100191.

Programmable processors such as multi-core digital signal
processors are especially good at computational intensive
tasks with very low power consumption, which make it very
competitive and promising solution to help reduce the high
computational burden and put it into real-time video
applications. However, up to the best of our knowledge, [17]
is the only work which addressed the encoder implementation
on DSPs, which however only tackles the implementation of
most simple SAD and SSE on DSPs and leave the most time-
consuming encoding modules, such as inter and intra
prediction, DCT/IDCT(Inverse/ Discrete Cosine Transform)
and Sample Adaptive Offset(SAO), untouched.

In this paper, to address the problem of optimized
implementation of HEVC video encoder on the powerful
main-stream TI TMS320C6678 DSPs[18], various Single-
instruction-multiple-data (SIMD) optimizations are explored
to optimize the most time-consuming encoding modules of
the DSP-based HEVC encoder. Up to the best of our
knowledge, this is the first of this kind to comprehensively
implement the encoder using SIMD. With our careful design,
the encoding speed of the DSP-based HEVC encoder is
significantly improved, which will help make possible to
achieve real-time implementation of HEVC for practical
video applications.

The rest of this paper is organized as follows. Section 2
analyses and identifies the most time-consuming encoding
modules of the DSP-based HEVC encoder. After a brief
introduction of the Single Instruction Multiple Data (SIMD)
in the chosen DSP, the SIMD acceleration design and
implementation for these modules are elaborated in Section 3.
Experimental results are shown in Section 4. Finally,
conclusions are drawn in Section 5.

II. COMPLEXITY ANALYSIS OF DSP-BASED HEVC ENCODER

In order to identify the most time-consuming modules in
the DSP-based HEVC encoder, we analyze the execution time
of our HM16.0 [19]-based embedded HEVC encoder on TI
TMS320C6678 DSP. The first 100 frames of the video
sequences in Class B (1080p) are encoded with a QP of 32
under Low Delay P main configuration. The rest of the
configurations are kept unchanged [20]. The average
execution time of the major modules of the DSP-based
encoder is shown in Fig. 1. As can be seen, although it is
slightly different from that in HM, the most time-consuming
modules are Inter prediction (mainly half/quarter pixel

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 20171719

Fig. 1 Execution Time Analysis of DSP-based HEVC Encoder

Interpolation), Intra prediction, DCT/IDCT, Quantization/De-
quantization, deblocking, SAO, SAD/SATD, Frame add/sub.
As will be shown in Section III and IV, he computational
performance of the first four modules can be effectively
improved by using SIMD methods.

III. PROPOSED SCHEME

To improve the video coding speed, several critical modules
will be written in linear assembly language using the powerful
SIMD instructions available in TI TMS320C6678 DSPs. The
main idea is to improve the parallelism of data processing by
using SIMD instructions.

In this section, we first give a brief introduction of the
Single Instruction Multiple Data instruction sets available in
the TI TMS320C6678 DSP. And we then elaborate the SIMD
acceleration design and implementation for these time-
consuming encoding modules identified in Section II.

A. C66x CorePac[21-22]

The TMS320C6678 is an eight-core, high-performance
DSP with both fixed-point and floating-point precision
capabilities. C66x CorePac is based on a Very Long
Instruction Word (VLIW) architecture, which differs from
Reduced Instruction Set Computing (RISC) or Complex
Instruction Set Computing (CISC) architectures by having
multiple execution units which can execute several
instructions in parallel. The C66x CorePac has two identical
data paths, A and B, each with four unique functional units
(M, L, S, and D). The M unit performs multiplication
operations, while the L and S units handle addition,
subtraction, logical, branching, and bitwise operations. The D
unit is responsible for load/store and address calculations. All
the functional units provide vector-processing capabilities
using the SIMD instruction set included in the C66x CorePac.
The SIMD instructions can operate on up to 128-bit vectors
providing data-level parallelism within each core. With L, M,
and S units on the two data paths, each core can perform eight
single-precision or two double-precision multiply-add
operations in one cycle. The TMS320C6678 also provides
thread-level parallelism by scheduling application on the eight
available cores, which is has been implemented in our DSP-
based HEVC encoder and thus out of the scope of this paper.

B. Inter Prediction

As is well known [1], inter prediction is the most powerful

encoding techniques to remove the inter-frame redundancy.
However, as shown in Fig. 1, inter prediction is responsible
for about one thirds of the computational burden of the whole
HEVC encoder. Furthermore, the major computation of inter
prediction lies in the interpolation for quarter-pixel motion
estimation (ME) and compensation (MC). Thus, we mainly
focus on the SIMD implementation here.

In HEVC, since quarter-sample precision is used for
ME/MC, 7-tap or 8-tap filters are used for interpolation of
fractional-sample positions of the luminance component,
(compared to six-tap filtering of half-sample positions
followed by linear interpolation for quarter-sample positions
in H.264/MPEG-4 AVC)[1], which make the implementation
different and more complicated.

Taking the design for the luminance component as an
example, the interpolation filter in HEVC is composed of two
steps, namely horizontal filtering first and then vertical
filtering. Please refer to Ref. [1] for more details of the
interpolation as well as filter coefficients.

Since storage and access of the source data, i.e., the integer
pixels for horizontal and vertical interpolation are quite
different, the implementation of the horizontal and vertical
interpolation will be elaborated separately as below.

Some of the notations used are defined as below. Let A-H
denote the value of luminance component of the eight integer
pixels used for interpolation while C0-C7 8-tap interpolation
filter coefficients. Ai is the pixel in row i and column A. It is
the intermediate result after horizontal interpolation filter, and
Ii is 14 bit precision to ensure the accuracy. X is the final
filtered pixel through vertical interpolation whose precision is
the same to the raw data.

1) Horizontal Interpolation
The proposed implementation of luma horizontal

interpolation filter is shown in Fig. 2. Firstly, eight reference
frame pixels on the horizontal direction are loaded into a
register pair which is composed of two adjacent 32-bit
registers. Then the interpolation filter is divided into two
ways, and each way completes four-pixel interpolation filters.
Finally, the two-way sums results are added together, taking
into consideration the interpolation offset and the 14-bit luma
horizontal filter result is obtained. SIMD instructions involved
as in Fig. 2 are specified as follows.

A B C D E F G H
LDNDW

src, reg1:reg2

DOTPUS4
reg1, coef1, sum1

8 Bytes

C0 C1 C2 C3

× × × ×

+ + +

sum1
(A×C0+B×C1+C×C2+D×C3)

DOTPUS4
reg2, coef2, sum2

C4 C5 C6 C7

× × × ×

+ + +

sum2
(E×C4+F×C5+G×C6+H×C7)

ADD
sum1,sum2,sum

+
sum

(sum1+sum2)

ADD
sum,offset,result result

(sum+offset)

(1)

(2)

(3)

Fig. 2. Horizontal interpolation filter for inter prediction

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 20171720

Download English Version:

https://daneshyari.com/en/article/5107845

Download Persian Version:

https://daneshyari.com/article/5107845

Daneshyari.com

https://daneshyari.com/en/article/5107845
https://daneshyari.com/article/5107845
https://daneshyari.com

