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a b s t r a c t

Spatial filters have been rigorously analyzed here for stabilization and dispersion relation preservation
properties using spectral-matrix theory.

Traditional LES faces problems of instability, aliasing and additional complexity of SGS modeling. Here,
an alternative is proposed where unfiltered governing equation is solved, followed by spatial upwind fil-
tering, without requiring any SGS models. This filter retains the resolution of high accuracy methods and
removes energy, like the action of hyper-viscosity used in spectral methods. As examples, solutions for (a)
accelerated flow past a NACA-0015 airfoil held normal to the flow and (b) transitional flow past a NLF
airfoil, have been reported.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Filtering is always implicitly present in all discrete computa-
tions – as explained in [1–3] using Fourier–Laplace transform tech-
nique. At the outset, we emphasize that the performance of a filter
is judged by its ability to leave smaller wave number components
of a variable unaffected while filtering the higher wave number
components – those known to create numerical problems. It is easy
to show the equivalence of discrete operations with low-pass fil-
tering of unknowns. In contrast, in traditional LES the governing
equation is analytically filtered before discretization. See e.g. in
[4–10] for the effects of different types of filters used in traditional
LES. Explicit Pad�e filters have been proposed in [11–14] to control
instabilities arising from mesh non-uniformities and the applica-
tion of numerical boundary conditions. The same authors now ad-
vance the use of spatial filters as a tool for LES [15,16]. These
spatial filters are central in nature for the interior nodes, while
one-sided boundary filters have been proposed for non-periodic
problems [12,17]. Present analysis shows that these boundary fil-
ters can be destabilizing near the inflow of a computational do-
main, as shown here by a global analysis for the first time using
matrix- spectral theory. This instability affects more number of
points, with increase in the order of interior filters. Also, the filter-
ing operation in traditional LES requires adding additional stresses
(termed as SGS or Leonard stresses) at the formulation stage itself.
In contrast, the spatial filters [11–16] are applied at the end of time
advancement of governing equations, without the need for any

stress modeling. Although, no strict rules have been proposed so
far for the frequency of filtering. Thus, there is a significant advan-
tage on the accuracy of LES performed using spatial filters for var-
ious reasons. Firstly, performing LES with spatial filters, one can
completely dispense with SGS model – an empirical process that
is mandatory in traditional LES. Secondly, this approach involves
less computation, as one needs to perform spatial filtering in the
physical space. Most importantly, this can also help avoiding
numerical instabilities due to aliasing operation involved in tradi-
tional LES. Note that in LES using explicit spatial filter [15–17] or
implicit filter in higher order upwinding methods [18] one only
band-limits the variable through the filtering operation. In
contrast, traditional LES filters the governing equation at the
formulation stage by convoluting various terms with another
space-dependent filtering function. This process can lead to alias-
ing and is explained next with the help of the following linear con-
vection equation:

@u
@t
þ c

@u
@x
¼ 0 ð1Þ

Solving this equation by an upwind method is equivalent to
attenuating the unknown u, with high wave number components
removed by the implicit filter that results in severe loss of signal
[19]. Solving the same equation by a non-dissipative scheme and
then band-limiting by spatial filtering does not lead to this loss
of signal. In contrast, explicit filtering in traditional LES converts
Eq. (1) to,
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where �u ¼
R

Fðx� x0Þuðx0Þdx0.

0045-7949/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compstruc.2008.12.009

* Corresponding author. Tel.: +91 512 2597945; fax: +91 512 2597561.
E-mail address: tksen@iitk.ac.in (T.K. Sengupta).

Computers and Structures 87 (2009) 735–750

Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate /compstruc

mailto:tksen@iitk.ac.in
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc


The filtering operation here is equivalent to taking product of
two space-dependent functions that can lead to aliasing – even
for a linear equation! Detailed discussion on aliasing for physical
plane computations can be found in [2]. Actual aliasing depends
upon the band-width of the filter function, F and the function rep-
resenting the unknown and its derivatives. While this is a possibil-
ity for a linear equation, the prospect of aliasing for nonlinear
equation is even more severe. Thus, for the solution of Navier–
Stokes equation, such convolution can produce just the opposite
of desired effect due to aliasing [2].

Filtering associated with discretization is equivalent to low-
pass filtering via the real part of the transfer function, while any
present negative imaginary part, attenuates the signal further by
the added numerical dissipation. It is well-known that the implicit
filtering of first derivative is stronger than that for the second
derivatives, at high wave numbers near the Nyquist limit [2]. Thus,
for solving the Navier–Stokes equation, the loss of accuracy due to
discretization becomes prominent, for the convective terms rather
than the diffusion terms. In traditional LES, filtering the governing
equation, creates an energy sink via the SGS model that interrupts
existing energy cascade. In numerical methods using higher order
upwinding to discretize convection terms, implicitly added numer-
ical diffusion plays a similar role across all wave numbers, specially
more at higher wave numbers. In [19], this connection between
LES and higher order upwinding was described.

While the above description was for the discretization process
by symmetric and non-symmetric stencils, a similar interpretation
holds for filtering operation also. While there might be similarity
between the real and imaginary parts of transfer functions of the
filters with the low-pass feature of filters and SGS models, the dis-
tinction between the two has to be explained clearly. An analytical
attempt is made here to show the differences and similarities be-
tween the two. This confusion has prompted the authors in [16]
to state that due to the spectral-like dissipation properties of the filter,
it also serves the same function as that of an SGS model without addi-
tional computational expense. Present analysis follows the global
spectral-matrix approach advanced in [19–21] described briefly
below.

If an unknown is represented by its Fourier–Laplace transform
[22,23] at the jth node, in a uniformly spaced grid of spacing h
by, uðxj; tÞ ¼

R
Uðk; tÞeikxj dk, then the exact derivative at the same

node is given by,

½u0j�exact ¼
@u
@x

� �
exact
¼
Z

ikUeikxj dk ð2Þ

This is a global approach in characterizing of discretization,
with the phase still determined by the point in question (xj) only.
In solving periodic problems, there is no distinction between local
and global approaches. However, a global approach is needed for
non-periodic problems. This issue of analysing discretization
methods was proposed in [20,21] using Fourier–Laplace transform
by using spectral-matrix analysis framework. In this method, one
obtains keq for all the nodes of the computational domain simulta-
neously. Additionally, the numerical properties of stability, DRP
properties and error analysis for any discrete method was obtained
– as reported in [19,21].

In a finite-domain, the first derivative is numerically estimated
for discrete computations (by any method) from, ½A1�fu0g ¼
1
h ½B1�fug. For explicit methods, ½A1� � ½I�, where ½I� is the identity
matrix. This general form can also be written as fu0g ¼ 1

h ½C�fug,
where ½C� ¼ ½A1��1½B1�. Appropriate ½C�-matrices for finite-domain
non-periodic problems are provided for a range of explicit and im-
plicit finite difference methods in [21] and for other generic meth-
ods are to be found in [2]. Here onwards, we will confine our
discussion to finite difference methods only. The dimension of

[C]-matrix is determined by the number of nodes. The top and bot-
tom rows of ½C� correspond to boundary and near-boundary sten-
cils for non-periodic problems. The derivative at the jth node is
evaluated as u0j ¼ 1

h

PN
l¼1Cjlul, where ul ¼ uðxl; tÞ ¼

R
Uðk; tÞeikxl dk is

the unknown at the lth node and N is the total number of nodes.
In confirmity with spectral representation in Eq. (2), this numerical
derivative is written as,

u0j ¼
Z

1
h

XN

l¼1

CjlUðk; tÞeikðxl�xjÞeikxj dk ð3Þ

As the phase part of the representation in (2) and (3) are iden-
tical, one can write the following by comparing the two
expressions:

i½keq�j ¼
1
h

XN

l¼1

Cjleikðxl�xjÞ ð4Þ

Although the entries of ½C� are real, ½keq�j is in general complex,
with real part representing the implicit low-pass filter of the dis-
cretization. If the stencil for differentiation is non-symmetric, then
one gets an imaginary part of keq that represents numerical dissipa-
tion or anti-diffusion, which either attenuates or amplifies the un-
known, respectively [19,21]. These effects of the real and
imaginary parts of keq become more pronounced at high wave
numbers. Thus, both the real and imaginary parts of keq can help
to band-limit the unknowns.

In [11,14], the problems of numerical instability caused by spa-
tial discretization at high wave numbers were proposed to be re-
moved by using spatial filters. Different order central filters were
proposed along with their transfer functions given in [11,17]. Fur-
thermore, boundary filters for non-periodic problems were also
proposed in [12–14] and their transfer functions were obtained
by a local method. The effect of filters on numerical instability
was similarly obtained in isolation, for non-periodic problems.
The application of local analysis technique to investigate bound-
ary/near-boundary filters is inconsistent and is proposed to be re-
placed here by the full-domain approach of [19–21].

Apart from reporting transfer functions of filters and their ef-
fects on numerical amplification factors by a local analysis, there
are no results for the full-domain non-periodic filters in the litera-
ture. One of the major reasons for undertaking the present research
is to perform a rigorous analysis for transfer functions and numer-
ical instability. More importantly, we report the DRP properties of
filters for performing LES and DES.

The present paper is formatted in the following manner. In the
next section, we describe the properties of the transfer function for
both periodic and non-periodic filters. In Section 3, the numerical
amplification factor and the DRP properties of various filters are
provided. In Section 4, we propose a new upwind filter. Properties
of the new upwind filter obtained by the present analysis, are dem-
onstrated by solving two examples from fluid mechanics that in-
volves resolving high wavenumber phenomenon in Section 5. We
conclude the paper with a summary and conclusion in Section 6.

2. Transfer function of periodic and non-periodic filters

The structure of central Pad�e filters [11–13] makes use of easy
solution of tridiagonal matrix equation for the filtered quantities
denoted with caret, evaluated in terms of the unfiltered variables
u on the right hand side of the equation given by,

aûj�1 þ ûj þ aûjþ1 ¼
XM

n¼0

an

2
ðujþn þ uj�nÞ ð5Þ
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