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a b s t r a c t

This paper reports development of a two-dimensional solver for compressible viscous flow using spectral
difference (SD) method and its applications on simulating laminar flow past two side-by-side cylinders at
various spacings. The high-order spectral difference solver is based on unstructured quadrilateral grids.
High-order curved wall boundary representation is developed for cylinders. Nine different spacings (cen-
ter-to-center distance/diameter s = 1.1, 1.4, 1.5, 1.7, 2, 2.5, 3, 3.4 and 4) are investigated. The simulation
results are compared to experimental results and other numerical results. As s increases, single bluff-
body, flip-flopping, anti-symmetric and symmetric wake patterns are predicted.

Published by Elsevier Ltd.

1. Introduction

1.1. Flow past two side-by-side cylinders

Investigations of the fluid flow and vortex dynamics about sim-
ple configurations of two cylinders help our understanding of the
flows around more complex and larger-scale structures, for in-
stance the flow around tube banks employed in process industries
[14] and especially in the power generation and oil industry as well
as flow around neighboring buildings and river flow vegetation,
etc. Other applications are also related to two cylinders such as
hollow fiber arrays with many applications in absorption, extrac-
tion and ultra-filtration [12] or paper machine forming fabrics
[9]. In the latter examples, the flows are laminar with Reynolds
number in the range of 150–200.

Zdravkovich [34,35] has reviewed the problem of mutual inter-
ference between pairs of cylinders in a steady flow. Much attention
was paid to the side-by-side and inline arrangements of the cylin-
der pair. Williamson [31] suggested that a spacing between two
side-by-side cylinders with the ratio of distance between cylinder
centers to the diameter (s) in the range of 2–6 produces vortex-
shedding synchronization. The resulting wake configuration will
be either two parallel streets in antiphase mode or a binary-vortex
street mode which consists of a street being composed of pairs of
like-signed vortices rotating around one another with Reynolds
number in the range of 100–200. Experimental results were also
obtained by Zhou et al. [36] at relatively low Reynolds numbers
(150–450). They suggested that the flow pattern is very much

independent of Reynolds number of this range. At s = 3, they ob-
served the anti-phase flow patterns for all Reynolds numbers using
more advanced flow visualization methods. Chang and Song [3]
made an early investigation of laminar flow past two side-by-side
cylinders using a blending technique of finite-element method and
finite-difference method. Recently, numerical simulations have
been performed for incompressible laminar flow past two side-
by-side cylinders by various methods. For instance, Meneghini
et al. [18] used a finite-element unstructured method, Kang [10]
and Lee et al. [11] employed a finite-volume structured method
with immersed boundary technique and Ding et al. [7] developed
a mesh-free finite-difference method and studied this particular
configuration.

The above studies mentioned are all about incompressible
flows. The simulation codes commonly attained at best second-or-
der accuracy in space. Furthermore, all the above discussed numer-
ical simulations employed only piecewise linear wall boundary
conditions or some kind of interpolation schemes to satisfy no-slip
condition for immersed boundary method. The present simulation
uses a recently developed Spectral Difference high-order unstruc-
tured method to simulate a low-Mach number compressible lami-
nar flow past two side-by-side cylinders. A cubic spline curve
fitting routine is programmed into our solver and it allows an auto-
matic construction of a cubic curved wall boundary condition for
each cylinder.

1.2. Spectral difference method

Until recently, compressible flow computations on unstruc-
tured meshes have generally been dominated by schemes re-
stricted to second order accuracy. However, the need for highly
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accurate methods in applications such as large eddy simulation, di-
rect numerical simulation, computational aero-acoustics etc., has
seen the development of higher order schemes for unstructured
meshes such as the discontinuous Galerkin (DG) method [4,5,1],
spectral volume (SV) method [29,17,30] and spectral difference
(SD) method [16,28,13]. The SD method is a newly developed effi-
cient high-order approach based on differential form of the govern-
ing equation. It was originally proposed by Liu et al. [16] and
developed for wave equations in their paper on triangular grids.
Wang et al. [28] extended it to 2D Euler equations on triangular
grids and Liang et al. [13] improved the convergence of the method
using implicit LU-SGS and p-multigrid schemes. Recently, Sun et al.
[27] further developed it for three-dimensional Navier–Stokes
equations on hexahedral unstructured meshes. Mohammad et al.
[21] investigated flow past a circular cylinder at subcritical Rey-
nolds number using the SD method. The SD method combines ele-
ments from finite-volume and finite-difference techniques. Similar
to the discontinuous Galerkin (DG) and spectral volume (SV) meth-
ods, the SD scheme achieves high-order accuracy by locally
approximating the solutions as a high degree polynomial inside
each cell. However, being based on the differential form of the
equations, its formulation is simpler than that of the DG and SV
methods as no test function or surface integral is involved. Conser-
vation properties are still maintained by a judicious placement of
the nodes at quadrature points of the chosen simplex.

This paper presents development of a new in-house two-
dimensional high-order SD code for viscous compressible flow.
The formulations are similar to the ones used by Sun et al. [27].
Previous numerical studies on two side-by-side cylinders have
not concluded the effect of tube spacings on flow separation points,
wake flow pattern and force coefficients. The SD method is em-
ployed in this paper to study the unsteady laminar flow past a pair
of side-by-side cylinders with nine different spacings (center-to-
center distance/diameter s = 1.1, 1.4, 1.5, 1.7, 2, 2.5, 3, 3.4 and 4).
We aim to see the effect of the spacings on flow pattern, separation
points and flow exerted forces.

The paper is organized as follows. Section 2 describes the
numerical approach and solution methods. In order to validate
the spatial accuracy of the code, Section 3 presents two cases with
analytical solutions and simulation results obtained by the SD
method in addition to a simulation of flow past an isolated cylinder
with detailed comparisons to other results. Section 4 reports the
simulation results obtained for laminar viscous flows past two
side-by-side cylinders. Finally, Section 5 summarizes the main
findings of this work.

2. Numerical formulation

The formulation of the equations is similar to the formulation of
Sun et al. [27] for unstructured hexahedral grids.

Consider the unsteady compressible 2D Navier–Stokes equa-
tions in conservative form

@Q
@t
þ @F
@x
þ @G
@y
¼ 0 ð1Þ

where Q is the vector of conserved variables; F and G are the total
fluxes including both inviscid and viscous flux vectors. To achieve
an efficient implementation, all elements in the physical domain
ðx; yÞ are transformed into a standard square element
(0 6 n 6 1;0 6 g 6 1) as shown in Fig. 1. The transformation can
be written as

x

y

� �
¼
XK

i¼1

Miðn;gÞ
xi

yi

� �
ð2Þ

where K is the total number of points used to define the physical
element, ðxi; yiÞ are the cartesian coordinates of those points, and
Miðn;gÞ are the shape functions. For elements with straight edges,
K is equal to 4. For elements lying on curved boundaries, 8 points
(four mid-edge and four corner points) can define a quadratic rep-
resentation and 12 points can determine a third-order cubic repre-
sentation. The metrics and the Jacobian of the transformation can
be computed for each element. The Jacobian can be expressed as
follows:

J ¼
xn xg

yn yg

 !
ð3Þ

The governing equations in the physical domain are then trans-
ferred into the computational domain, and the transformed equa-
tions take the following form:

@ ~Q
@t
þ @

~F
@n
þ @

~G
@g
¼ 0 ð4Þ

where ~Q ¼ jJj � Q and

~F
~G

 !
¼ jJjJ�1 F

G

� �
ð5Þ

In the standard element, two sets of points are defined, namely the
solution points and the flux points as illustrated in Fig. 1.

In order to construct a degree (N � 1) polynomial in each coor-
dinate direction, solutions at N points are required. The solution
points in 1D are chosen to be the Gauss points defined by

Xs ¼
1
2

1� cos
2s� 1

2N
� p

� �� �
; s ¼ 1;2; . . . ;N ð6Þ

The flux points are selected to be the Gauss–Lobatto points given
by

Xsþ1=2 ¼
1
2

1� cos
s
N
� p

� �h i
; s ¼ 0;1; . . . ;N ð7Þ

Using the solutions at N solution points, a degree (N � 1) polyno-
mial can be built using the following Lagrange basis:

hiðXÞ ¼
YN

s¼0;s–i

X � Xs

Xi � Xs

� �
ð8Þ

Similarly, using the fluxes at (N þ 1) flux points, a degree N polyno-
mial can be built for the flux using a similar Lagrange basis

liþ1=2ðXÞ ¼
YN

s¼0;s–i

X � Xsþ1=2

Xiþ1=2 � Xsþ1=2

� �
ð9Þ

Solution pointsFlux points

Fig. 1. Distribution of flux and solution points for the third order SD scheme.
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