
Spurious modes in geometrically nonlinear small displacement finite
elements with incompatible modes

Theodore Sussman a, Klaus-Jürgen Bathe b,⇑
a ADINA R & D, Inc., Watertown, MA 02472, United States
b Massachusetts Institute of Technology, Cambridge, MA 02139, United States

a r t i c l e i n f o

Article history:
Received 15 March 2014
Accepted 16 April 2014
Available online 22 May 2014

Keywords:
Incompatible finite elements
Spurious modes
Small displacements
Small strains
Geometrically nonlinear analysis
Critical strain value

a b s t r a c t

We demonstrate the existence of spurious modes in finite elements with incompatible modes when a
geometrically nonlinear displacement analysis with small displacements and strains is performed. The
spurious modes are a direct consequence of the incompatibility of the elements with displacement
boundary conditions. We derive a critical compressive strain condition analytically, and show that the
critical strain can be quite small, with small displacements, if the geometric aspect ratio of the elements
is large but still practical. In numerical examples we give further insight and results in correspondence
with the analytical theory, and demonstrate that spurious modes can be triggered in practical small strain
analyses when using elements with incompatible modes.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The two-dimensional 4-node and three-dimensional 8-node
incompatible modes finite elements (here now referred to as ICM
elements) have been proposed in Ref. [1], improved for element
geometric distortions in Ref. [2] and extensively used for many
years. As the formulation of the ICM elements is quite well known,
we do not give the formulation details here; for a general descrip-
tion of the elements, see for example Ref. [3]. The key advantage of
these elements, as compared with the elements not containing
incompatible modes, is that the ICM elements do not exhibit shear
locking when subjected to pure bending. The undistorted ICM
elements pass the linear analysis patch tests, and, with proper
corrections, the distorted elements also pass these tests [2,3].

The elements are in fact a special case of the ‘enhanced strain
elements’ (referred to as EAS elements) proposed in Ref. [4] and
extensively studied, see for example Refs. [5–11] and the
references therein. The concept of enhancing the strain assump-
tions in finite elements is quite appealing to avoid locking
phenomena but it was also shown that the EAS elements, and
hence ICM elements, are in fact unstable in large strain conditions
[8–10]. To remedy the behavior of the elements, a stabilization
technique was proposed [11] with the use of deformation
dependent stabilization parameters. While perhaps useful,

however, in our developments of finite element procedures we
prefer to not use such factors [3,12].

Although the ICM elements are perhaps best suited to model
pure bending, in practice the elements are used in very complex
nonlinear analyses in which the elements are subjected to a wide
variety of stresses and boundary conditions. Thus it is valuable to
understand the behavior of these elements in as many situations
as possible. In fact, the present paper is motivated by an attempt
to explain the unexpected and unphysical results obtained in the
analysis of a large industrial problem involving only small strains.

The purpose of the present paper is to demonstrate the
existence of spurious modes (displacement patterns with zero or
negative energy) in meshes of geometrically nonlinear ICM
elements subjected to only small displacement and small strain con-
ditions. The spurious modes are associated with the incompatibility
of the incompatible modes with the boundary conditions, and the
spurious modes are triggered when the strains reach a certain
critical value. The critical value is highly dependent on the element
geometric aspect ratios, with elements having a large aspect ratio
giving a small critical value.

In Section 2, we derive the tangent bending modulus of a two-
dimensional undistorted rectangular 4-node ICM element, assum-
ing geometric nonlinear conditions, and a linear elastic material
with zero Poisson’s ratio. The theoretical results show that even
in small displacements only, the element can become unstable.

In Section 3, we present some numerical examples that illus-
trate and give insight into the derived theoretical results, and that
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show the spurious modes for various element assemblages in two-
and three-dimensional analyses. We also include the results of a
practical analysis case.

Finally we give some closing remarks in Section 4.

2. Derivation of the element critical strain criterion

In the derivation of the critical strain condition, we make
various simplifying assumptions in order to have a clear derivation
and obtain insight into the reasons for the instability to occur.
These assumptions will be introduced during the derivation.

The principle of virtual work for the total Lagrangian formula-
tion is [3]

dW ¼
Z

Sijdeij dV ð1Þ

where dW is the virtual work, Sij is the 2nd Piola–Kirchhoff stress
tensor, referred to the original configuration, eij is the Green–
Lagrange strain tensor, referred to the original configuration and
the integral is performed over the original volume. For brevity, we
have dropped the left super- and subscripts commonly used to
indicate the time and reference configuration [3].

The increment in the principle of virtual work can be written

DdW ¼
Z

@Sij

@ekl
Dekldeij þ SijDdeij

� �
dV ð2Þ

where the D denotes an increment.
In the following we assume small strain conditions with linear

isotropic elasticity, Poisson’s ratio equal to zero and planar
deformations in the x1–x2 plane. Eq. (2) becomes

DdW ¼
Z
ðEðDe11de11 þ De22de22Þ þ 4GDe12de12 þ S11Dde11

þ S22Dde22 þ 2S12Dde12Þ dV ð3Þ

in which S11 ¼ Ee11; S22 ¼ Ee22; S12 ¼ 2Ge12 and the symmetries of
Sij and eij are employed.

Using the definition eij ¼ 1
2 ðui;j þ uj;i þ uk;iuk;jÞ where ui;j ¼ @ui

@xj
, ui

are the displacement components, xi are the (original) coordinate
components, and k is an index used in conjunction with the
Einstein summation convention, we obtain for small strains

e11 � u1;1; e22 � u2;2; e12 �
1
2
ðu1;2 þ u2;1Þ ð4a;b; cÞ

De11 � Du1;1; De22 � Du2;2; De12 �
1
2
ðDu1;2 þ Du2;1Þ ð5a;b; cÞ

Dde11 ¼ Du1;1du1;1 þ Du2;1du2;1; Dde22 ¼ Du1;2du1;2 þ Du2;2du2;2;

Dde12 ¼ 1
2 ðDu1;1du1;2 þ Du2;1du2;2 þ Du1;2du1;1 þ Du2;2du2;1Þ

ð6a;b; cÞ

so that Eq. (3) becomes

DdW ¼
Z

EðDu1;1du1;1 þ Du2;2du2;2Þ dV þ
Z

GðDu1;2du1;2

þ Du1;2du2;1 þ Du2;1du1;2 þ Du2;1du2;1Þ dV

þ
Z

S11ðDu1;1du1;1 þ Du2;1du2;1Þ dV þ
Z

S22ðDu1;2du1;2

þ Du2;2du2;2Þ dV þ
Z

S12ðDu1;1du1;2 þ Du2;1du2;2

þ Du1;2du1;1 þ Du2;2du2;1ÞdV ð7Þ

We now consider the single rectangular two-dimensional 4-
node ICM element shown in Fig. 1. This element is first subjected
to a homogeneous deformation that produces the stresses S11,

S22, S12. Since this deformation is homogeneous, the incompatible
modes in the element are not triggered.

Now consider the following incremental nodal displacements:
Du1

1 ¼ Du3
1 ¼

L2
4 Dh, Du2

1 ¼ Du4
1 ¼ �

L2
4 Dh in which the superscript

denotes the node number and in which Dh controls the magnitude
of the displacement. Here Dh represents an incremental rotation as
shown in the figure (assuming small strains, the original value of L2

is used instead of the deformed value). The incremental nodal
displacements cause an internal incremental displacement within
the element of
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Fig. 1. 2D 4-node ICM element under homogeneous deformation and incremental
bending.
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