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a b s t r a c t

Optimization of significantly non-linear structures is a demanding task. The paper discusses how bound-
aries of the feasible region can be followed as generalized equilibrium paths in parametric space, reflect-
ing engineering demands on stiffness, strains and stability. Solutions on the constraint paths are then
evaluated with respect to any chosen objective function. For few design parameters, this approach is effi-
cient and robust. This is demonstrated for a pre-stressed pressurized membrane of three parameters,
showing several constraint paths for the problem, and indicating how these are used in optimization.
The view is often closer to engineering design analyses than the mathematical optimization settings,
which often has problems in handling stability constraints.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Structural optimization has developed rapidly. The methods
seek a structure which fulfills specified functional requirements
with a minimum amount of material, or gives the best possible
function for a specific amount [1–4, and many others].

The formulation of a mathematical optimization problem
defines an objective function to be minimized. Equality and
inequality constraints limit some response quantities, but also
introduce bounds for the design variables. Delimited by these con-
straints, a space is investigated for the best possible solution. The
basic setting of a mathematical optimization problem is thereby
commonly seen as the search for:

min
n

f ðnÞ ð1Þ

where a chosen objective function is minimized under the
constraints:

h1ðnÞ ¼ 0 ð2Þ
h2ðnÞ 6 0 ð3Þ

and n is a set of design variables, the number of which is strongly
dependent on the setting. Normally, the optimal solution to the
problem will activate at least one inequality constraint in h2ðnÞ,
i.e., be exactly on the border of violating it.

Structural design will normally define functional requirements
on the solution, in the form of strain, stiffness and stability criteria.
The criteria are typically based on results from simulations for a

discretized structural model. The discrete values are then either
included in the design variables n or implicitly dependent on them
through, e.g., a set of established equilibrium equations. The num-
ber of design variables is rather low when a set of global parame-
ters are used to define the design, and high when one design
parameter is related to each of the elements or nodes in the struc-
tural model. The number of design variables in relation to the num-
ber of variables in the discretized structural model has effects on
the choice of an appropriate optimization algorithm [3].

For structures where non-linear responses or instabilities are
important aspects, the optimization problem is complex [5–8].
This is partly due to the more involved expressions in the struc-
tural model description. Another complication is related to the
non-uniqueness in response to loading, even if this can occasion-
ally be the objective, as in [9]. The optimization of non-linear struc-
tures has been primarily aimed at trusses and shells, and at
physically non-linear structures [10]. The non-linearities can in
most published cases be considered as rather mild. Very few pub-
lications describe optimization settings where the non-linearity
leads to marked changes in qualitative behavior of the studied
structure. Such significantly non-linear structures will cause prob-
lems for the optimization algorithms, due to their non-unique
response to loading. Practically, they are also demanding, as they
normally need step-wise increments to reach the solution for a
specified loading.

The present work is directed towards the optimization of signif-
icantly non-linear and instability affected structures, with a low
number of design variables. As an illustration of the method, the
optimization of a pneumatically pressurized flat membranes
has been chosen. For this problem, a few geometric measures, a
material parameter and a pre-stretch variable are relevant design
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parameters. Previous work [11,12], has shown that these parame-
ters significantly affect the whole pressurization response of the
membrane. The modelling assumptions and methods are given in
[11,13], but are briefly described below.

The optimization problem is here focussing primarily on the
constraints. These are mapped onto the design space, reflecting
the fact that the functional requirements are a necessary objective
for the designer, whereas strict optimality is often less fundamen-
tal. In relation to the setting above, the main calculations can
thereby be seen as a fulfilment of the equality constraints, and suc-
cessive activations of a subset of the inequality constraints, i.e.,
symbolically as:

h1ðnÞ ¼ 0 ð4Þ
h2;iðnÞ ¼ 0 ð5Þ

the solution of which gives a constraint path which constitutes a
potential part of the boundary of the feasible design domain.
Activating all inequality constraints systematically will thereby
delimit the feasible region. The feasible side of the constraint path
is normally obvious.

When the feasible region is outlined by the combination of the
constraint paths, the optimal solution can be chosen. As such solu-
tions will normally be situated on the boundary of the feasible
region, all solutions on the relevant constraint paths are easily
evaluated with respect to any chosen objective function, Eq. (1).
It is obvious that several objective functions can be simultaneously
evaluated for all such solutions, giving the basis for the choice of
final design.

In a structural design context, fulfilling the stated constraints
leads to an augmented equilibrium problem. Such problems can
be solved by generalized path-following, used for evaluation of
the parametric sensitivity in instability behavior in [14,15]. By
following these paths in the parametric space, the incremental
solutions of non-linear equilibrium for each parametric instance
can be avoided. A similar aim is recently formulated as a need to
follow parameterized instability states [16,17]. The view has some
similarity to the response surface methodology [18], and to proper
general decompositions [19].

2. Mechanical formulation

2.1. Basic form

The geometrical description of the pressurized membrane
assumes a continuous, thin surface structure. The material is seen
as incompressible, isotropic, and hyper-elastic. Strains and stresses
are described by the right Cauchy–Green deformation tensor C, and
the second Piola–Kirchhoff stress tensor S, both quantities constant
over the thickness. Introducing conditions of incompressibility,
and a local plane-stress situation, a hyper-elastic model is given
by [20]:

S ¼ �qC�1 þ 2
@W
@C

ð6Þ

where W is a strain energy density function, and q is seen as a
Lagrange multiplier. With the incompressibility assumption
expressed in the third strain invariant I3ðCÞ ¼ 1, a Mooney–Rivlin
form defines the stress–strain relation from two constitutive con-
stants [20]:

W ¼ c1ðI1ðCÞ � 3Þ þ c2ðI2ðCÞ � 3Þ ð7Þ

with the first and second invariants of the tensor C. Different rela-
tions between the two constitutive constants are here represented
as a ratio k ¼ c2=c1, with the demand that c1 þ c2 ¼ G=2, where G
is the linear shear modulus [20].

2.2. Element expressions

The element used in the discretization of the large deflection
space membrane simulations is a flat, linearly interpolated con-
stant strain triangle [11]. Element nodal translations are extracted
from an Nu-dimensional vector of global structural displacements
u. Strain components are evaluated as non-linearly dependent on
nodal displacements, but constant over the element volume. The
stress tensor components lead to expressions for the vector of
structural internal forces f ¼ f ðuÞ. Similar expressions also give
the element contributions to the tangent stiffness matrix.

An outward normal over-pressure w is introduced by a com-
pressible gas with zero density, giving the structural external force
vector p ¼ pðu;wÞ, where displacements u affect area and orienta-
tion of the elements.

2.3. Equilibrium equations

A quasi-static one-parametric pressure loading problem seeks
solutions ðu;wÞ satisfying the structural residual equilibrium
equations:

Fðu;wÞ � f ðuÞ � pðu;wÞ ¼ 0 ð8Þ

where F; f ; p, and u are of dimension Nu, and w is the scalar
over-pressure. This system gives solutions in the form of one-
dimensional pressure-deflection curve segments, with intersections
possible only at critical states.

The differential relation corresponding to Eq. (8) is:

dF ¼ @f
@u

du� @p
@u

du� @p
@w

dw ¼ K � Kp
� �

du� dw
@p
@w

ð9Þ

which gives a tangent stiffness matrix containing a load-dependent
term, cf. [11,21]. The structural tangent stiffness matrix is symmet-
ric if the membrane is suitably closed.

The formulation used for the equilibrium problem is restricted
to problems where the internal forces are uniquely defined from
the current displacements and parameters. Uniqueness in response
to a specific loading is not required, however, as the algorithm is
able to identify and connect solutions of equal degrees of instabil-
ity. Non-unique responses, however, demand extra care in the
interpretation of results, cf. the examples below.

3. The multi-parametric setting

3.1. Basic form

In the present context of seeking constraint paths for the vari-
ables n, additional parameters are introduced to allow the investi-
gation of the parameter dependence in response [15]. With Nk

parameters in k ¼ ½w; nT�T, an augmented system is established as:

GðzÞ � Gðu; kÞ �
Fðu; kÞ
gðu; kÞ

� �
¼ 0 ð10Þ

where the top part corresponds to the equilibrium equations in Eq.
(8), and the Ng augmenting equations gðu; kÞ define the subset of
equilibrium solutions fulfilling Eqs. (4) and (5). The solutions to
the augmented system consists of manifolds of dimension
Nk � Ng , and contains displacements as well as design variables.
The present work aims at problems where Ng ¼ Nk � 1 giving solu-
tion curve segments, or Ng ¼ Nk � 2 giving solution surface patches.
This implies that only problems with rather few design parameters
are treatable with the present viewpoint.

As the solutions to Eq. (10) are continuous in the parametric
space, they can give a sequence of responses to a specified loading
for a variable structural design without tracking the whole
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