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a b s t r a c t

Fully Constrained Design (FCD) is a new method for discrete sizing optimization of steel structures that
balances computational efficiency with solution quality for application to large-scale problems. The
proposed method is based on optimality criteria, but does not require gradient information and handles
discrete variables. Based on benchmarking studies, FCD produces superior quality solutions to optimality
criteria (>4%), but inferior to heuristic methods (<2%). FCD is approximately 10� less computationally
efficient than optimality criteria and 100�more efficient than heuristic methods. We present a successful
industry application of FCD that yields cost savings of 19% compared to conventional design methods.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Engineers are often challenged to design steel structures that
use the least amount of economic and environmental resources
possible to satisfy the system’s functional requirements. The
design of these structures can be decomposed into three compo-
nents: (i) topology, which concerns the number and connectivity
of members; (ii) shape, which pertains to the location of structural
joints; and (iii) sizing, which involves defining member cross-
sections [1]. This paper presents a flexible, general and scalable
algorithm to optimize the sizing of steel members given a fixed
topology and shape.

The objective of the optimization process is to minimize the
cost of the structure while satisfying design performance require-
ments for safety and serviceability. Engineers strive to meet these
design requirements and also stay within or under the engineering
time allotted for in the design budget. In this case, the total weight
of the structure is used to estimate cost. Steel weight is commonly
used as a surrogate for cost in the structural design industry and

has been demonstrated to be accurate for structures of similar
shape and topology that use industry standard member sizes [2].
Engineers commonly select from this discrete set of steel profiles
during the member sizing process to avoid significant cost premi-
ums associated with the use of non-standard section sizes [3].
However, as discussed by Sarma and Adeli [4], weight is only one
of five main factors that influence the total cost of a steel structure.
The other factors include the cost of rolled sections, the number of
different section types used in the structure, the number of con-
nections and the geographic location of the project site. Developing
a cost model that incorporates all of these factors is outside of the
scope of this paper and is discussed in Section 6 as a topic of future
research.

Member sizing optimization is traditionally an iterative process
that is performed manually by the engineer. The number of possi-
ble design alternatives (i.e., the design space) for sizing problems is
an exponential function of the number of design variables and the
number of possible choices for each variable. Even for a relatively
simple 10-bar truss problem as described in Section 4.1, the num-
ber of possible sizing configurations is greater than 1.0E + 10. Find-
ing optimum designs within such a large design space using
manual methods is very difficult. Often engineers leave vast areas
of the design space unexplored that potentially contain better per-
forming design configurations [5,6].
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Optimization algorithms enable engineers to leverage com-
puter processing power to systematically search the design space
for optimal member sizing configurations. Since engineers must
select member sizes from a finite list of manufactured sizes to
avoid cost premiums as discussed above, the sizing variables in
the optimization process are discrete. Researchers have developed
and applied a variety of optimization algorithms to discrete sizing
problems for steel truss and frame structures over the past
50 years as surveyed by Arora [7]. These algorithms can be
broadly categorized as deterministic or non-deterministic. Deter-
ministic methods such as mathematical programming [8–11] and
optimality criteria [12–14] were first applied to discrete sizing
problems in the 1960s. These algorithms need an initial design
configuration to begin the search and require gradient computa-
tions in the exploration process, namely the calculation of the
first derivative of the objective and constraint functions with
respect to the design variables. In some cases, the objective
and/or constraint functions are discontinuous or irregular, making
the gradient search difficult [15]. In addition, the constraint func-
tions may vary depending on local regulatory requirements and
stakeholder preferences [16], thus requiring the customization
of the algorithm for each unique set of constraint functions. The
implementation of the algorithm can be time consuming and
error prone in such cases [17].

Another group of optimization techniques that have emerged
recently do not require gradient information for the objective
and constraint functions and use probabilistic transition rules
rather than deterministic ones. The basic idea behind these sto-
chastic techniques is to simulate a natural phenomenon, such as
survival of the fittest, the immune system, swarm intelligence
and the cooling process of molten metal through annealing. A
detailed review of these algorithms as well as a comparison of their
performance for discrete sizing problems is provided by Hasancebi
[18,19]. These heuristic search and optimization methods have a
couple of advantages when compared to the deterministic meth-
ods discussed above. First, they separate domain knowledge from
search, making them generally applicable to a wide variety of
problem formulations without customization. Second, there is no
limitation on the continuity of the search space since no gradient
information is required.

A disadvantage of heuristic methods, however, is that they
require significantly more computational resources than determin-
istic techniques [20]. Research on the convergence of these algo-
rithms has shown that the number of evaluations required to
reach a given solution quality grows as a function of the square
root of the size of the problem [21]. To keep computation times
manageable, researchers have focused on applying heuristic meth-
ods to truss and frame structures involving fewer than 100 sizing
variables. Further research is required to compare the performance
of these methods to deterministic techniques for large-scale mem-
ber sizing problems involving hundreds or even thousands of vari-
ables which are common in industry practice.

The goal of the research presented in this paper was to develop
a discrete member sizing optimization method that is (i) flexible
(i.e., can accommodate different objective and constraint functions
without modification); (ii) general (i.e., does not require the search
space to be continuous) and (iii) scalable (i.e., can be applied to
large structures involving greater than 100 sizing variables in a
time frame that is at least comparable to conventional design prac-
tice). To achieve these objectives, the proposed optimization algo-
rithm, which we call the Fully Constrained Design method,
employs a new way of handling constraints and generating new
designs that is presented in Section 3. We benchmark the method
against the best performing existing deterministic and heuristic
optimization methods in Section 4. In Section 5, we benchmark
the method against conventional industry practice on a large

stadium roof structure to demonstrate the scalability of the
method. Finally, we summarize the benchmarking results and
discuss the suitability of the method for general industry applica-
tion in Section 6.

2. Mathematical model for discrete sizing optimization
introduction

A general discrete sizing structural optimization problem can be
formulated as:

Minimize : W ¼ f ðx1; x2; . . . ; xdÞ; d ¼ 1;2; . . . ;D ð1Þ

Satisfying : Gq ¼ f ðx1; x2; . . . ; xdÞ 6 1;
d ¼ 1;2; . . . ;D and q ¼ 1;2; . . . ;M ð2Þ

xn 2 Sn fX1;X2; . . . ;Xpg ð3Þ

In this formulation, W is the weight of the structure, which is a sca-
lar function. The set of design variables are represented as x1, x2, . . .,
xd. The design variable xn belongs to the set Sn, which describes the
available list of discrete member section values. The inequality
G 6 1 represents the constraint functions, which must be less than
unity in this case. The structural constraints considered in the
numerical examples in Section 4 include member stresses and
nodal displacements. The letters D and M are the number of
design variables and constraint functions, respectively. The letter
p is the number of available section size choices for a given design
variable.

3. Fully Constrained Design method

3.1. Description

The Fully Constrained Design (FCD) method for member sizing
optimization is based on the optimality criteria approach discussed
in Section 1. FCD possesses a new approach to constraint handling
and the generation of new designs that overcomes the observed
limitations to the flexibility and generality of the optimality crite-
ria method, namely (1) the requirement that the objective and con-
straint functions are continuously differentiable in terms of the
design variables, and (2) the requirement that the algorithm be
customized for each unique problem formulation.

The proposed method does not require gradient information.
It involves creating a one-to-one mapping between each member
size design variable and a governing constraint. Based on the
value of the governing constraint, the section size of each mem-
ber variable is adjusted incrementally from an ordered list of
choices.

Fig. 1 provides an overview of the FCD process. Steps 1–5 are
identical to the optimality criteria method; steps 6–10 are unique.
Each process step is described in more detail below.

Step 1 – Start: The optimization process begins with the creation
of an analytical model that contains an initial configuration of
member sizes. This initial configuration of member sizes can
either be chosen at random or be based on a previous design
solution.
Step 2 – Analyze structure: The analytical model is used to calcu-
late the structure’s response to the defined loading. The
responses calculated in the numerical examples discussed in
Section 4 include the maximum stress (rn

max) for each member,
the maximum deflection (Dn

max) for each member, and the global
deflection (DGmax), considering all of the members in the struc-
ture. The value of the objective function, total steel weight (W)
in this case, is also calculated.
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