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a b s t r a c t

A new methodology is presented for the ultimate strength and moment–curvature analysis of arbitrary
composite sections under biaxial bending and axial load. The definition of section geometry and material
properties can be unconditionally complex, based on an object-oriented implementation. Stress integra-
tion is performed using a Green path integral, with an adaptive strain-mapped Gaussian sampling. Deriv-
ative-free solution strategies for the calculation of incremental and ultimate response are applied. Results
are presented in the form of moment–curvature curves, ultimate strength interaction curves and 3D fail-
ure surfaces. The performance of the methodology is demonstrated through various case studies, compar-
isons and benchmarks.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Reinforced concrete and composite structural elements, widely
used in buildings and bridges, are generally subjected to a com-
bined action of biaxial bending and axial load. This is a result of
their section geometry and material composition, their position
and orientation in the structure and, most importantly, the nature
of external loading. Columns at corners or under two-way slabs,
bridge piers and composite decks, subjected to wind or earthquake
excitation, are representative cases. Assessing the adequacy of
these sections at ultimate limit state (usually via interaction dia-
grams) or providing information on their inelastic response gradu-
ally up to failure (in the form of moment–curvature curves), is a
computationally intense task, mainly due to material nonlineari-
ties and geometrical complexities, particularly for composite sec-
tions. Therefore, addressing this problem requires efficient
solution algorithms, characterized not only by the requisite robust-
ness but also by execution speed, since section analysis is often a
repetitive task [1] within the broader computational frameworks
of nonlinear structural analysis, design, assessment and retrofit.

The problem of arbitrary section analysis has received attention
in the literature since the early 1960’s (e.g. [2–4]), however this
attention has been intensified during the last decade along with
the advent of inexpensive personal computers. Various analytical,
numerical and mixed methodologies for analyzing sections of vary-
ing complexity in terms of geometry and material composition
have been suggested, with varying degrees of reported efficiency

in terms of convergence stability and speed. Since the literature
is extensive, a proper categorization is attempted hereinafter, in
order to assess whether the research field under discussion is open
for further novelties and improvements. In this direction, five key
characteristics of section analysis methodologies have been identi-
fied, namely (a) the type of arbitrary section addressed, i.e.
whether it is reinforced concrete (R/C) or generally composite,
(b) the form of material constitutive laws, e.g. polynomial or arbi-
trary functions, (c) whether section subdivisions are imposed prior
to stress integration, (d) the stress integration scheme and (e) the
solution strategies for applying force equilibrium conditions.

A non-exhaustive yet representative directory of previous stud-
ies on the subject is summarized in Table 1, providing specific
information on the aforementioned five key topics for each study.
A critical review on this categorized literature summary leads to
the following remarks:

� A significant number of suggested algorithms are limited to R/C
sections, consisting of a single concrete surface and a group of
individual fibers for reinforcement bars (i.e. two distinct mate-
rials). In order to bypass such limitations, the first prerequisite
of the present methodology will be the unconditional section
complexity, i.e. unlimited number of section components (sur-
faces, fiber groups and – newly introduced – lines), each
assigned to a different material constitutive law.
� Most studies impose restrictions on material stress–strain con-

stitutive laws, usually in the form of specific Code directives
(e.g. [5,6]), or more elaborate piecewise polynomial laws (e.g.
[7,8]). For this reason, the second prerequisite of the present
methodology will be the use of fully arbitrary material
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constitutive laws in piecewise form, as reported only in Bonet
et al. [1]. This enables the analysis of sections with materials
of non-polynomial stress–strain relationships (e.g. [9] for
high-strength concrete and nonlinear analysis, [10] for confined
concrete and [11,12] for plain concrete).
� The most critical element that affects both the accuracy and

speed of a section analysis algorithm is the stress integration
scheme. There are three major paths that can be followed,
namely (a) fiber integration (e.g. [13–15]), (b) analytical inte-
gration using closed-form functions (e.g. [8,16]) and (c) numer-
ical integration, usually in a form of Gaussian sampling on a
Green path integral (e.g. [17,18]). The first approach is both
approximate and slow, requiring an increased fiber mesh den-
sity and a proportional number of arithmetic operations to
reach an acceptable level of accuracy. Therefore, this method
is now obsolete for ultimate strength section analysis and is
used only for non-cylindrical stress fields, e.g. in cases of cyclic
loading and/or load path dependency [1]. As far as the second
approach is concerned, its main advantage is that it yields exact
and quick results (especially for lower order functions), it is
however totally restricted to a specific stress–strain expression,
which is in conflict with the aforementioned second prerequi-
site. Consequently, the sole path to provide a generalized solu-
tion for arbitrary material constitutive laws is the
implementation of a suitable numerical integration scheme.
However, it has been reported that, in certain cases, numerical
integration may be more expensive than analytical methods,
while low order numerical integration may yield unacceptably
large errors [1,19] because the required order of numerical inte-
gration is not known a priori [8]. These issues will be confirmed
and eventually addressed in the present methodology, by
applying an improved adaptive strain-mapped Gaussian sam-
pling on a Green path integral, demonstrating fast execution

with customizable accuracy, which expresses the third prere-
quisite of the present method.
� A closely related issue to the aforementioned stress integration

efficiency is whether section subdivisions are required in the
employed integration scheme. There are many studies (e.g.
[1,7,8,20]) where this geometric manipulation is imposed prior
to stress integration, naturally leading to a reduction in execu-
tion speed. For this reason, the suggested scheme will be formu-
lated without need for any subdivisions (e.g. [6,18]).
� The majority of solution strategies presented in the literature,

for applying force equilibrium conditions, are based on secant
or tangent schemes (e.g. Newton-Raphson), which require the
prior calculation of derivative measures (e.g. section stiffness).
However, the disadvantages of (a) the additional computational
cost for calculating derivatives (e.g. using finite differences
[21,22]) and (b) the inherent non-convergence issues related
to secant/tangent methods, has led some researchers to adopt
simpler and more straightforward derivative-free procedures
[8,16,23], which, under certain conditions, demonstrate stable
and fast performance. Following the third prerequisite, the
present methodology will apply advanced derivative-free meth-
ods [8], providing, where necessary, various techniques to guar-
antee convergence.

In order to satisfy the aforementioned three prerequisites of the
suggested methodology, namely (a) unrestrained section complex-
ity (b) arbitrary material constitutive laws and (c) fastest possible
execution with customizable accuracy, a new feature set is sug-
gested in the last row of Table 1. In the subsequent chapters, the
mathematical formulation of the methodology will be deployed,
together with validation tests, case studies, extended comparisons
with previous studies and benchmarks. The ultimate goal of the
present study is to suggest a new robust and fast procedure for

Table 1
Features of selected previous studies on the analysis of arbitrary R/C and composite sections.

Authors Section type Material constitutive law
for surfaces

Section subdivision Stress integration Solution strategies

Charalampakis and Koumousis [8] Composite Piecewise up to cubic
polynomials

Curvilinear trapezoids Closed-form per trapezoid Derivative-free (Brent)

Chen et al. [16] Composite Parabolic-linear No subdivisions Closed-form Derivative-free
(regula-falsi)

Chiorean [18] Composite Parabolic-linear with
softening

No subdivisions Green/Gauss-Lobatto with
adaptive bisection

With derivatives
(arc-length)

Rosati et al. [5] Composite Parabolic-linear One polygon per r � e
part

Closed-form per polygon With derivatives (NR)

Sfakianakis [15] Composite Parabolic-linear with
softening

No subdivisions Fiber integration Incremental search

Sousa and Muniz [7] Composite Piecewise up to cubic
polynomials

One polygon per r � e
part

Closed-form per polygon –

Brøndum–Nielsen [25], Dundar and
Sahin [22], Yen [21]

Reinforced
concrete

Constant (rectangular) No subdivisions Closed-form With derivatives as finite
differences (NR)

Bonet et al. [1] Reinforced
concrete

Piecewise non-
polynomial (arbitrary)

Polygons (thick layers)
per r � e part

2D Gauss or Green/Gauss per
polygon

–

Fafitis [17] Reinforced
concrete

Parabolic-linear No subdivisions Green/Gauss –

Pallarés et al. [6] Reinforced
concrete

Non-polynomial – linear
(EC2)

No subdivisions Closed-form With derivatives (NR)

Penelis [3], De Vivo and Rosati [26],
Alfano et al. [27]

Reinforced
concrete

Parabolic-linear One polygon per r � e
part

Closed-form per polygon With derivatives (NR)

Rodriguez and Ochoa [20] Reinforced
concrete

Parabolic-linear with
softening

Trapezoids Closed-form per trapezoid With derivatives (NR)

Werner [4] Reinforced
concrete

Parabolic-linear One polygon per r � e
part

Closed-form per polygon Nested iterations

Yau et al. [23] Reinforced
concrete

Constant (rectangular) No subdivisions Closed-form Derivative-free
(regula-falsi)

Suggested methodology Composite Piecewise non-
polynomial (arbitrary)

No subdivisions Green/Gauss with adaptive
strain-mapping

Derivative-free (Brent)
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