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a b s t r a c t

This paper describes a new force-based hinge element implemented in the framework of the Large Incre-
ment Method (LIM). The element can be of arbitrary cross section and is capable of including inelastic
behaviour close to structural hinges. The element formulation can accommodate elasto-plastic strain
hardening material behaviour. The solution procedure involves the analysis of elastic and inelastic defor-
mations separately facilitated by splitting of the element length into elastic and inelastic zones. Deforma-
tion is calculated by considering inelastic behaviour in the element volume close to both ends of the
structural member using an optimum number of integration points in order to achieve good accuracy
while maintaining computational efficiency. The predictions of both conventional- and quasi-hinge ele-
ments are compared against predictions from Abaqus™. Predictions of the quasi-hinge element show sig-
nificant improvements over the conventional-hinge method and are shown to converge on the Abaqus™
prediction as the number of monitoring sections in the element is increased.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The possible occurrence of inelastic deformations when a struc-
ture experiences either earthquake or blast loading, can be a signif-
icant concern when designing structures. Reducing the
computational time associated with modelling and analysis of
inelastic structures is an important goal in structural engineering.
Generally, inelastic behaviour in frame structures can be studied
using two main approaches (i) the Distributed Inelastic Method
(DIM), which can be further subdivided into techniques using
either customised fibre elements or, more commonly, using con-
tinuum elements and (ii) the Concentrated Inelastic Method
(CIM). In the fibre-based DIM, each structural member in the frame
is modelled by numerous fibres along the length and over the cross
section of each element. The fibre-based DIM enables both stress
and strain to be determined along the length and through the
thickness of the structural member during an analysis. This per-
mits calculation of the gradual spread of inelastic behaviour over
the member cross-section and length as deformation proceeds.
The fibre-based DIM can provide an accurate solution, enable
tracking of phenomena such as cracking and residual stress while
being much less demanding in terms of computational resource
than a typical full general DIM based on continuum elements. Nev-
ertheless, the computational cost of even the fibre-based DIM can
still be prohibitive for certain problems. In such cases, a CIM can

provide an alternative and faster method when inelastic behaviour
is considered. Using this method, a single element with multiple
integration points is used to model each structural member.

When a frame structure is subjected to lateral forces above its
yielding load, most of the inelastic material response is often ob-
served to be concentrated towards the ends of the frame’s struc-
tural members. This observation has prompted the development
of the CIM (also known as the plastic hinge or lumped inelastic
method). The latter is a computationally efficient method to repre-
sent inelasticity in structural frame members. Along the majority
of its length a beam usually remains elastic; it is usually only to-
wards the hinges that the elastic capacity of the beam’s section is
passed. In the conventional implementation of this method, a
zero-length hinge is assumed while the rest of the element’s
behaviour remains elastic [1]. This implies that, as with the fibre-
based DIM, just one beam-column element per structural member
can capture the inelastic behaviour of the entire structure. This is
in contrast with the continuum-based DIM, which involves numer-
ous distinct elements in modelling each structural member. How-
ever, a limitation of the conventional CIM is that inelastic
behaviour can only be considered at the very ends of a structural
beam member. The method is also incapable of including gradual
plasticisation of the hinges, i.e. the gradual increase in length of
the plastic zone near the hinges. The resulting element accuracy
is consequently affected.

The displacement-based solution strategy involves minimising
the strain energy in a structure. This means the final solution is
either equal to, or very slightly higher than the minimum possible
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theoretical energy for the structure. Consequently, the final numer-
ical prediction is usually a very slight overestimation compared to
both the theoretical and also the actual stiffness of the structure
[2]. This is the case for all elements implemented using a displace-
ment based solution strategy, including hinge elements [3]. As a
consequence two methods of improving the conventional hinge
element predictions have been proposed; the first is the ‘refined
hinge’ method which, using a displacement-based approach in-
volves the use of stiffness reduction factors to modify the original
elastic stiffness matrix, the second is the ‘quasi-hinge’ method
which involves the implementation of a non-zero hinge length.
The results of both methods are closer to the exact answer, com-
pared to the conventional zero-length hinge method. These
hinge-based methods can be much more computationally efficient

than a conventional DIM [3] while still providing results of satis-
factory accuracy for most practical purposes [4–6].

In much of the previous research appearing in the literature,
hinge elements based on the CIM have been developed and
implemented within the framework of relatively mature displace-
ment-based finite element solution strategies. An issue with these
displacement-based solution techniques is error accumulation
caused by linearisation; after each load increment or step, an iter-
ation procedure, involving a linearisation process, is conducted to
minimise any residual error in the solution. This error increases
slightly following each step due to the accumulation of small resid-
ual errors that remain following each step [7]. Normally, the con-
vergence criteria of the solution algorithm are set so as to ensure
this error is negligible. Still, the accumulated error cannot be

Glossary of symbols

The following convention is used in this paper: matrices and second
order tensors are written in bold using upper-case symbols,
vectors are written using bold lower-case symbols while
scalar quantities are written using regular upper and lower
case symbols. For convenience a glossary of symbols is
given below:

Variables Definition
X body domain
Xe elastic body domain
Xp plastic body domain
D deformation vector
e strain tensor
r stress tensor
eij strain vector components
rij stress vector components
eN axial strain
hi, hj rotation of the ends of the beam element
he elastic contribution towards rotation at ends of the

beam element
hp plastic contribution towards rotation at ends of the

beam element
hy section rotation with respect to the y axis
/N, /i, /j stiffness reduction factors
l section ratio
A element cross section
Ae elastic cross section
Ap plastic cross section
b width of cross section
bi body force vector components
b body force vector
B strain–displacement matrix
B unbalanced load definer matrix
C equilibrium matrix
Cr
�1 right side inverse matrix

d nodal displacement vector
Dm material constitutive matrix
Dm section constitutive inverse matrix
E elastic modulus
Et inelastic modulus
�f i nodal force component
fi elemental force component
fs section shape function
fSe section force vector
f e
i elastic flexibility matrix components
df p

i inelastic flexibility matrix components
�f nodal force vector
f elemental force vector

df change in elemental force vector (unbalanced load
vector)

FSe
e elastic section flexibility matrix

FSe
p inelastic section flexibility matrix

F flexibility matrix
Fe elastic flexibility matrix
Fp inelastic flexibility matrix
h element section height
h0 conjugate gradient modifier
Hi height of story i
I identity matrix
K stiffness matrix
k0, k1, k2, k3 stiffness parameters
L element length
Le elastic element length
Lp inelastic element length
Lp

i ; Lp
j inelastic length next to end i and j

My moment about y axis
Mp plastic moment capacity
Mp

r reduced plastic moment capacity
Mi, Mj moments at both i, j ends
nu nodal degree of freedom number
nf elemental degree of freedom number
N axial force
Ny section axial strength capacity
N shape function matrix
p external load vector
Q(x) section force definition matrix
Sc shape calibration factor
s search direction vector
s boundary surface
se elastic boundary surface
sp plastic boundary surface
ti surface traction force components
t surface traction force vector
ui displacement vector components
u deformation vector
ue elastic deformation vector contribution
up

i ; up
j inelastic deformation vector contributions at either end

of element
xi local coordinate system
x coordinate aligned with beam length
Dx displacement shift in x direction
z distance from the neutral plane
Dz displacement shift in z direction
Z force shape function
A⁄, B⁄, C⁄, a1, a2, b1, b2, c1 dummy variables
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