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This paper presents an accurate semi-analytical technique to analyse piezoelectric plates. The proposed
technique is built upon the scaled boundary finite-element method. No kinematic and electrostatic
assumptions are introduced in the derivation process. The in-plane dimensions are divided into 2D ele-
ments and the 3D geometry is obtained by translating the mesh in thickness direction. The through-
thickness solutions are expressed analytically with a matrix exponential function. The 3D-onistent nature
allows the proposed technique to describe the through-thickness behaviour of piezoelectric plates accu-
rately. Numerical shear locking does not arise. Four numerical examples are presented to highlight the
performance of the proposed technique.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Piezoelectric materials are widely used in sensing devices and
actuators of engineering applications due to their unique electro-
mechanical coupling characteristics. The advantages of high dis-
placement resolution, fast response, substantial durability and
wide frequency band further increase their usages broadly [1,2].
The coupling nature and the integration into composite structures,
however, inevitably scale up the difficulty in numerical analysis for
material modelling, designs and structural responses [3,4]. Their
increasing usage in smart structures and structural health moni-
toring [5,6], both continuously ensure structural safety, has
emphasised the significance in reliably simulating the responses
of piezoelectric materials even in their design stage.

Analytical approaches are available to analyse certain types of
piezoelectric structures [7-10], albeit they are mostly derived for
specific geometries and/or loading conditions. This limits their
applications for modern engineering designs that require high de-
gree of flexibility. The numerical analysis of piezoelectric struc-
tures, including the optimisation of the design [11,12], is
generally conducted using the finite element analysis (FEA)
[13-15]. A detailed review was given by [16] on the early FEA
development for piezoelectric materials.

The development of plate/shell elements in FEA is the main re-
search focus for piezoelectric materials in the past two decades
[17-19]. This is mainly due to their popular plate-form applica-
tions, such as the bending actuators and sensors [6,2,20,21].
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However, different with pure elastic materials, plate assumptions
do not necessarily apply to piezoelectric plates. High order
through-thickness behaviour appears even for small thickness-to-
length ratio [22]. This leads to the need of using higher order
theories [23-25], equivalent single layer formulations [17,26] or
layerwise formulations [27,4] for the element development. The
combination of single layer (for deformation) and layerwise (for
electric potential) formulations was also found in the literature
for developing piezoelectric elements [28,29]. For a summary of
the advantages and disadvantages of the aforementioned
approaches, readers are referred to two past reports [26,18].

In order to deal with the numerical locking phenomenon, the
above approaches require conventional remedies such as the
reduced integration technique [19], assumed strain field [30],
mixed formulation [4]| and the mixed interpolation of tensorial
components approach [17,26]. Instead of using plate/shell ele-
ments, Braess [31] presented a 3D-finite element formulation for
thin piezoelectric structures with the use of reduced integration
method. This assures the consistency of 3D constitutive behaviour
of piezoelectric materials. There exist a great amount of other
numerical methods to effectively analysing piezoelectric plates.
Meshless method is one of those being popularly developed in
the last two decades and it leads to a number of successful meth-
ods to simulate piezoelectric structures [32-35]. Recently Nguyen-
Van et al. [36] extended the strain smoothing method, which is
based on a meshfree conforming nodal integration [37], to develop
a smoothed four-node piezoelectric element. Sladek et al. [38] also
developed a meshless method based on the local Petrov-Galerkin
approach to analyse piezoelectric plates with functionally graded
material properties.
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The authors have recently developed a unified 3D consistent
technique to solve plate bending problems [39,40]. This technique
is derived solely from the three-dimensional theory. The in-plane
dimension of a plate is divided into 2D finite elements. The solu-
tion is expressed analytically in the through-thickness direction.
The 3D-consistent nature allows this technique to be applicable
for both thin and thick plates. It has been proven the developed
technique does not suffer from transverse shear locking [39,40].
No ad hoc factors, such as the shear correction factor, are intro-
duced. This technique is based on the scaled boundary finite-
element method [41], which solves boundary value problems
semi-analytically. The scaled boundary finite-element method
has been successfully applied to model stress singularities occur-
ring at crack tips, bi-material interfaces and multi-material wedges
[42-45]. Its first application of analysing stress singularities in pie-
zoelectric composites is developed by Mayland and Becker [46].
Comparable studies are subsequently carried out by the authors
[47,48]. Its applications are also found in solving problems in tran-
sient elastodynamics and in unbounded domains [49-53]. Owing
to its advantages in accurately evaluating singular stress fields
and in flexibly meshing, the scaled boundary finite-element meth-
od is employed for simulating crack propagation [54-56]. Recently,
this method is extended to plate and laminated composite analysis
in the framework of Kirchhoff's plate theory [57-59].

In this paper, the technique in [39,40] is extended to analyse thin
to moderately thick piezoelectric plates by including the electrome-
chanical coupling in the developed formulations. The general solu-
tions, i.e., the deflections and the electric potential, are expressed
analytically as an exponential matrix function of the thickness coor-
dinate. The stiffness matrix is constructed by treating the piezoelec-
tric plate as a stack-up of two identical layers. This allows the
proposed technique to give the solutions of the top, middle and bot-
tom planes of the piezoelectric plate. The solutions of the three
planes are subsequently used to compute the coefficients of the qua-
dratic through-thickness solutions. A scheme to tailor the 3D stiff-
ness matrix for the applications of piezoelectric bending sensor or
extending actuatoris also developed. Owing to the analytical expres-
sion of the solutions, numerical shear locking issue does not arise.
Moreover, with the use of high order spectral elements, the proposed
technique is able to accurately model piezoelectric plates with
curved boundaries without sacrificing computational efficiency.

The paper is organised as follows. Section 2 demonstrates the
extension of the scaled boundary finite-element method for piezo-
electric plates. The proposed solution technique is subsequently
presented in Section 3. It is followed by the numerical studies in
Section 4 and finally, a conclusion is given in Section 5.

2. Scaled boundary finite-element method for piezoelectric
plates

This section formulates the scaled boundary finite-element
method for piezoelectric plates. Only the key equations related to
this development for piezoelectric materials are included. The
readers are referred to [39,40] on plates of elastic materials for fur-
ther details.

2.1. 3D governing equations of piezoelectric plates

A piezoelectric plate of constant thickness t is shown in Fig. 1.
The z coordinate of the Cartesian coordinate system is chosen along
the transverse (through-thickness) direction of the plate. The x, y
coordinates are parallel to the midplane. As the piezoelectric plate
is handled as a 3D structure, the displacement components along
X-, y- and z-directions are denoted as uy = u,(x,y,2), u, = uy(x,y,z)
and w =w(x,y,z), respectively. Similarly, the electric potential is

denoted as ¢ = ¢(x,y,z). Following the original formulations for
elastic plates [39], the displacement and electric potential vector
{u}={a(x, y,2)} is arranged as {i1} = [w, uy, uy, ¢]". The strains and
electric fields {&} = {€(x,y,z)} are expressed as
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The stresses and electric displacements {6} = {G(x,y,z)} follow
from linear piezoelectricity

{6} = [02, 0x, Oy, Tay, Tyz, Tuzs D2, Dy, Dy]' = [H]{&} (3)
with the constitutive matrix [H] given as

cl [ }
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in which [C] contains the elastic constants, [e] contains the piezo-
electric constants and [€] contains the permittivity. The equation
of equilibrium with vanishing body force and body charge is written
as

[L'{a} =0. (5)

The bottom and top surfaces of the plate may be subjected to
surface traction and electric charge {q} = [f2, fx.fy, q)". Various sup-
porting conditions can be applied on the sides of the plate.

The in-plane dimensions are discretised into 2D spectral
elements [60]. A typical 3rd order spectral element is shown in
Fig. 1 with 4 nodes across each in-plane direction. The geometry
of an element is represented by interpolating its nodal coordinates
{x} and {y} using the shape functions [N]=[N(n,{)]=[N1(#,{),

Ny(n,¢), ... ] formulated in the local coordinates # and (:
x(n, ) = [N[{x} (6a)
y(n,0) = [N{y} (6b)

The geometry of the 3D plate is obtained by translating the 2D mesh
along the z-direction. This corresponds to placing the scaling centre
of the scaled boundary finite-element method at infinity [49,61].

The governing differential equations (Egs. (1)-(5)) are formu-
lated in the scaled boundary coordinates z, # and {. Only the coor-
dinate transformation between the x, y coordinates and the 7, ¢
coordinates are required. Based on Eq. (6b), the transformation is
expressed as
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with the Jacobian matrix
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Inverting the transformation in Eq. (7) leads to
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