
Statistical reconstruction of two-phase random media

J.W. Feng a, C.F. Li a,⇑, S. Cen b,c, D.R.J. Owen a

a Civil & Computational Engineering Centre, College of Engineering, Swansea University, United Kingdom
b Department of Engineering Mechanics, School of Aerospace, Tsinghua University, Beijing, China
c Key Laboratory of Applied Mechanics, School of Aerospace, Tsinghua University, Beijing, China

a r t i c l e i n f o

Article history:
Received 20 July 2012
Accepted 24 March 2013
Available online 25 April 2013

Keywords:
Composite material
Random microstructure
Sample reconstruction
Non-Gaussian field
FFT

a b s t r a c t

A robust and efficient algorithm is proposed to reconstruct two-phase composite materials with random
morphology, according to given samples or given statistical characteristics. The new method is based on
nonlinear transformation of Gaussian random fields, where the correlation of the underlying Gaussian
field is determined explicitly rather than through iterative methods. The reconstructed media can meet
the binary-valued marginal probability distribution function and the two point correlation function of the
reference media. The new method, whose main computation is completed using fast Fourier transform
(FFT), is highly efficient and particularly suitable for reconstructing large size random media or a large
number of samples. Its feasibility and performance are examined through a series of practical examples
with comparisons to other state-of-the-art methods in random media reconstruction.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-phase random media such as rocks, concrete, alloy and
composite materials are ubiquitous in the natural environment
and engineering. Their mechanical, thermal and electrical etc.
properties exhibit a strong random nature with discontinuities
on the interfaces between different phases. The responses of mul-
ti-phase random media subjected to force, thermal or other type of
loading are often of great interest to engineers and researchers, and
such responses should be analyzed in the sense of statistics due to
the inherent heterogeneity. At present, Monte Carlo methods re-
main the most popular and versatile approach for simulating the
randomness of multi-phase random media and estimating their
stochastic responses. The effectiveness of Monte Carlo methods re-
lies largely on rapid reconstruction of large amounts of samples
that can accurately represent the diversity and variation of the
practical random media under simulation.

The main focus of this work is on the reconstruction of two-
phase composite materials with random morphology, based on
statistical characteristics derived from a few measured samples.
The proposed reconstruction method is general and applicable to
other types of random media as well, and instead of using the term
‘‘composite’’, we will use the general term ‘‘random media’’ for the
remainder of the paper.

For a two-phase (black & white) random medium D, the indicator
function I(x), "x 2 D is defined as

IðxÞ ¼
0; if the material at x is in black phase
1; if the material at x is in white phase

�
: ð1Þ

Due to the random nature of phase distribution, the indicator func-
tion is often treated in the context of probability as a binary valued
random field, denoted by I(x, x) where x indicates a basic random
event.

In practice, the random field I(x, x) is often assumed to be sta-
tionary (also termed as statistically homogeneous in [1–3]) up to
the second order, so that its mean l and variance r2 are invariant
when shifted in space. In addition, the autocorrelation function be-
tween points x and x + s depends only on the relative position s of
the two points, i.e.

RIðsÞ ¼
E½ðIðx;xÞ � lÞðIðxþ s;xÞ � lÞ�

r2 ; 8x; ð2Þ

where E() is the expectation operator. The range of RI(s) is �1 6
RI(s) 6 1 (Schwarz inequality).

Another assumption of I(x, x) is ergodicity. That is, the ensem-
ble average of statistical parameters can be derived by the space
average of these parameters over a sufficiently large sample.

Given a few, or even only one, realizations of the random media,
the task of reconstruction is to extract statistical parameters (l, r2

and RI(s) etc.) regarding the random field I(x, x) and generate sam-
ples that obey the same statistics as the reference realizations.

2. Overview

2.1. Related work

Over the past few decades, random media reconstruction has
attracted growing attention from both academia and industry, in
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particular in the fields of composite materials, geostatistics and
computational mechanics. To date, there are four main categories
of reconstruction methods: the random set method, the stochastic
optimization method, the maximum entropy method and the iter-
ative nonlinear transformation method.

The random set method [4–6] is based on Boolean operations
(union, intersection, dilation, erosion, et al. [7]) of random sets.
This method is fast but it is limited to a few types of random
media with relatively simple morphology, e.g. composites with
sphere or polygon inclusions or Voronoi cell structure. For exam-
ple, if the inclusion phase is spheres, their centers can be gener-
ated following a Poisson distribution; the radius can be similarly
assumed to obey certain probability distribution; and adjacent
spheres need to be trimmed if they overlap. However, for com-
posites with complicated structures, e.g. amorphous phases, the
random set objects are difficult to locate and operate, leading to
deterioration in efficiency. In short, the random set method is fast
and effective for certain types of random media, but is not a uni-
versal method.

Yeong and Torquato [1,8] introduced a simulated annealing
method for generating digitalized random media realizations.
Given a scanned image of the target random medium, this method
starts from an initial configuration satisfying the volume fraction,
and for the simulated image it successively performs random
exchanges of pixels with different colors to minimize certain
‘‘energy’’ that measures the difference in correlation function,
two-point cluster function [9] or n-point correlation function [10]
etc. between the reference image and the simulated image. If the
energy decreases after the exchange, the new configuration is con-
sidered superior to the old one, and the exchange is accepted. If the
energy increases after the exchange, the new configuration is con-
sidered possible to be a transitional state from ‘‘local optimum’’ to
‘‘global optimum’’, and hence the exchange is accepted with a
probability, which depends on the energy of the old and the new
configurations and the annealing temperature [1]. Recently, sev-
eral other stochastic optimization approaches were developed to
overcome the low efficiency of the simulated annealing method,
including genetic algorithm, Tabu-list and hybrid optimization
methods [3,11]. The stochastic optimization method is perhaps
the most flexible method for reconstructing random media sam-
ples, and it allows a wide range of statistical characteristics to be
incorporated in sample generation. Its disadvantage is the expen-
sive computational burden when large samples (either in size or
in number) are required.

In the maximum entropy method [10,12,13], random media are
modeled as Markov random fields. The joint probability distribu-
tion of Markov random fields is the Gibbs distribution [14], which
is exactly the probability distribution that maximizes the entropy
under expectation-type confinements (e.g. l, r2, RI(s), etc)
[15,16]. The explicit formation of the Gibbs distribution cannot be
obtained because it is an infinite dimensional function. Thus, Mar-
kov chain Monte Carlo (MCMC) methods [17] are employed to sam-
ple from the Gibbs distribution, for which the Metropolis–Hastings
algorithm [18,19] (a random walk MCMC method) has been a pop-
ular choice. Similar to the stochastic optimization method, which
can be viewed as a special type of the Metropolis–Hastings algo-
rithm [19,20], a large number of random walk steps are often
required to achieve the equilibrium distribution status of the
Markov chain. For practical use, the maximum entropy method is
criticized to be even slower than the stochastic optimization meth-
od, and not suitable for large size problems [3].

The nonlinear transformation of Gaussian fields has been exten-
sively used in modeling multivariate distributions [21,22]. The
marginal distribution of the non-Gaussian field is met exactly,

and the covariance of the underlying Gaussian field is computed
numerically to satisfy the two point covariance requirement of
the non-Gaussian field. This approach has been employed to model
two-phase random media [2,23,24]. However, the relationship be-
tween the covariance of the non-Gaussian field and that of the
Gaussian field is ignored in [23,24], while using an iterative algo-
rithm the covariance function of the underlying Gaussian field is
calculated in [2]. The most costly part of the nonlinear transforma-
tion approach is to determine the nonnegative definite covariance
function (nonnegative definite covariance matrix in the discrete
case) of the underlying Gaussian field. In most of the literature
[2] and [25–28], the Gaussian field is constructed from an initial
power spectral density (PSD) structure and an iterative algorithm
is adopted to repeatedly update the PSD of the Gaussian field in or-
der to make the PSD of the non-Gaussian field meet the target, and
this can be a very slow process for practical problems. Another lim-
itation of this method is that the marginal distribution and the
covariance of the non-Gaussian field need to satisfy a compatibility
relation in advance [29].

In this paper, the relationship between the correlation of the
binary field and that of the Gaussian field is derived explicitly to
avoid the costly iteration procedure commonly employed in exist-
ing nonlinear transformation approaches. The compatibility rela-
tion between the marginal distribution and the autocorrelation of
binary valued fields are also rigorously investigated, and proved
to be not a critical restriction. These new developments signifi-
cantly improve the efficiency of sample generation, allowing thou-
sands of large samples to be generated within a few minutes. The
main limitation of the method is that it does not utilize other sta-
tistical characteristics (e.g. n-point correlation and lineal-path
function). However, numerical examples demonstrate that the
new method is suitable for a variety of types of two-phase random
media, as two-point correlation contains considerable information
on random morphology.

2.2. Preliminary knowledge: spectral decomposition of stationary
random fields

The Wiener–Khinchin theorem [30,31] states that the PSD f(X)
of a stationary second-order random field a(x, x) is the Fourier
transform of the corresponding autocorrelation function R(s). If
a(x, x) is a periodical stochastic process [32,33] with a period of
2N, i.e. aðx1; . . . ; xn;xÞ ¼ aðx1 þ 2N1; . . . ; xn þ 2Nn;xÞ, the discrete
version of the Wiener–Khinchin theorem can be written as [34,35]:

f ðX1; . . . XnÞ ¼
XN1

s1¼�N1þ1

. . .
XNn

sn¼�Nnþ1

Rðs1; . . . ; snÞe
�
Xn

j¼1

pi
Nj

Xjsj

;

Xj ¼ ½�Nj þ 1;Nj� ð3Þ

Rðs1; � � � ; snÞ ¼
1Q

jð2NjÞ
XN1

X1¼�N1þ1

� � �
XNn

Xn¼�Nnþ1

f ðX1; � � �XnÞe

Xn

j¼1

pi
Nj

Xjsj

;

sj ¼ ½�Nj þ 1;Nj� ð4Þ

where i is the imaginary unit, Nj are positive integers, the integer
coordinates s1; . . . ; sn denote the space domain, the integer coordi-
nates X1; . . . Xn denote the frequency domain, and f ðX1; . . . XnÞ is real
and nonnegative valued due to the nonnegative definite property of
Rðs1; . . . ; snÞ.

Then, a(x, x) can be represented by an orthogonal increment
process:
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