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a b s t r a c t

The geometry of cracks in a structure are often difficult to determine accurately, leading to uncertainties
in structural analysis. This paper presents a probabilistic fracture mechanics (PFM) approach to evaluate
the reliability of cracked structures considering the uncertainty in crack geometry. The shape sensitivity
analysis of the stress intensity factor (SIF) is performed efficiently using the scaled boundary finite ele-
ment method (SBFEM). No remeshing is required as the size and orientation of a crack vary. Reliability
is estimated using various probabilistic techniques. Numerical examples demonstrate the accuracy and
simplicity of the present method.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

It is common for ageing infrastructure such as dams, bridges,
and buildings to experience cracking, leading to increased safety
concerns. On the smaller scale, cracking is the dominant mode of
failure in advanced composite devices such as oxide fuel cell stacks
and printed electronics used in various engineering field applica-
tions today. The geometry of cracks, such as the size and orienta-
tion, can strongly affect the reliability of the structure. However,
a considerable amount of uncertainties often exist in the measure-
ment of crack geometry. In addition, there are uncertainties in
qualifying the material properties and applied loads for a structural
analysis. In fact, progressive deterioration of concrete and corro-
sion of steel usually lead to significant variations of system param-
eters and performance over the lifetime of a structure [1]. It is
widely accepted that a probability based approach for structural
design and safety evaluation is more rational than a simple deter-
ministic approach based on the factor of safety.

Probabilistic fracture mechanics (PFM) provides a rational
framework for the safety assessment of cracked structures
through probabilistic analysis techniques. Some common tech-
niques include the Monte Carlo simulation (MCS) and the first/
second-order reliability methods (FORM/SORM). In all these
methods, the failure probability is predicted by modelling the
uncertainties in the applied load, material properties and crack
geometry as random variables which are defined by specific

probability distribution functions. A sensitivity analysis has to
be performed to determine the sensitivity of the fracture response
of the structure, such as the stress intensity factor (SIF), with re-
spect to material properties and loading (size sensitivity) and
the crack geometry (shape sensitivity). While size sensitivity can
be dealt with easily by current finite element based methods,
numerical and computational modelling of shape sensitivity
remains a major challenge, particularly when there is a high
uncertainty in the crack geometry.

The shape sensitivity analysis can yield either (1) response grid,
i.e. the SIF calculated for a set of discrete crack sizes and orienta-
tions, which is inputted into the MCS; (2) derivatives of the SIF,
with respect to the crack size and orientation, which are required
for the FORM/SORM. Although predetermined explicit formulas
of the SIF can be used (e.g. [2]), their application to fracture
mechanics is limited owing to complexities in loading, material
behavior and crack geometry [3]. To obtain the response grid re-
quires repetitive calculations at discrete points of crack size and
orientation. Direct application of, say, the finite element method
(FEM) to model this is evidentally a brute force approach (e.g.
[4–6]) and needs numerous deterministic analyses at the expense
of excessive remeshing and computational effort, especially near
the crack tip region. The boundary element method (BEM) offers
an alternative approach, replacing the domain mesh with a simpler
boundary mesh (e.g. [7–9]). However, since the crack surface forms
part of the boundary it still requires discretization and remeshing.
Several techniques to improve the numerical effectiveness of the
FEM in determining the derivatives of the SIF have been proposed.
One such example is the well recognized virtual crack extension
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(VCE) technique, originally developed by Parks [10] and Hellen
[11]. Hwang et al. [12–14] and Hwang and Ingraffea [15] followed
on by adopting modified formulations developed by Lin and Abel
[16] to investigate first/second-order derivatives of multiple crack
systems, axisymmetric stress states and crack-face and thermal
loading cases. Latter methods include those based on continuum
mechanics theory, namely the material derivative formulations.
Unlike the VCE technique, mesh perturbation is not a fundamental
requirement in order to calculate the energy release rate or the SIF.
Rao and Rahman [17–19], Rahman and Rao [20] and Rahman and
Chen [21] continued with this line of work to analyze shape sensi-
tivity of cracks in isotropic and orthotropic functionally graded
materials for mode-I and mixed-mode loading cases. Reddy and
Rao [22–25] and Rao and Reddy [26] later introduced the well
known fractal finite element method (FFEM) and extended it by
adopting the material derivative concept to obtain derivatives of
the SIF.

Recently, an innovative numerical tool known as the scaled
boundary finite element method (SBFEM) was introduced by Song
and Wolf [27] possessing promising characteristics that can
greatly simplify shape sensitivity analysis. The SBFEM is a semi-
analytical fundamental-solutionless method which combines the
advantages of both the finite element formulations and the bound-
ary element discretization. Unlike the BEM, no fundamental solu-
tion is required and unlike the FEM, generally, only the boundary
need be meshed thereby reducing the spatial dimension of the
problem by one. The stress singularity at a crack tip is expressed
analytically. Special elements or numerical techniques are no long-
er required for fracture analysis. High accuracy and efficiency of
the SBFEM in evaluating the SIF of cracks in homogeneous materi-
als and bimaterial interfaces have been demonstrated in [28–34].
Chidgzey and Deeks [35] made the interesting connection between
the coefficients in Williams power series expansion [36] of dis-
placement and stress fields and the SBFEM solution. Not only the
SIF, but also the T-stress and coefficients of higher order terms
are determined directly by the SBFEM. Advancements to the appli-
cation of the SBFEM to other areas have also been growing in re-
cent times. In [37] a parallel algorithm based on the coupled
FEM/SBFEM is introduced for large scaled soil-structure interac-
tion. Birk and Behnke [38] also derived equations to further the
SBFEM for analysis of 3D-layered continua such as rigid circular
and square foundations embedded in or resting on the surface of
layered homogeneous or inhomogeneous soil deposits over rigid
bedrock. Liu and Lin [39,40] and Lin et al. [41] extended the SBFEM
formulations to evaluate eigenvalues of waveguide structures
including quadruple corner-cut ridged circular, rectangular,
L-shaped, vaned rectangular, square and elliptical waveguides.
Dynamic crack propagation problems are modelled for the first
time in [42] using a flexible SBFEM remeshing algorithm which
was later modified in [43] to incorporate the use of polygon scaled
boundary finite elements around the crack tip to increase effi-
ciency in the SIF calculation.

This paper presents a procedure to perform the shape
sensitivity of linear elastic cracked structures efficiently using
the novel scaled boundary finite element method (SBFEM), in
conjunction to the MCS and the FORM/SORM for reliability esti-
mation. It takes advantage of the fact that the SBFEM mesh is
limited to the boundary, excluding the crack faces. A shape sen-
sitivity analysis is performed by simply changing the position of
the crack tip. Only one mesh is sufficient to cover a large range
of variation of crack size and orientation. The whole analysis can
be easily automated as no remeshing is involved. This procedure
is applied to investigate the shape sensitivity and reliability of
cracked plates. The crack orientation, as well as the crack size,
is considered as an uncertainty variable, a case seldom reported
in the literature.

2. Scaled boundary finite element method

2.1. Fracture application

To illustrate the concept of shape sensitivity using the scaled
boundary finite element method (SBFEM), the arbitrary homoge-
neous cracked domain shown in Fig. 1 is considered. The crack size
and orientation are, a, and, c, respectively. The scaling centre, O, is
selected at the crack tip. The geometry of the domain satisfies the
scaling requirement, i.e. the enclosed boundary is visible from the
crack tip. The boundary is discretized into elements, Se (superscript
e – element). On each element, a local coordinate, g, bounded by
�1 6 g 6 +1 is introduced. The physical domain, with coordinates
ðx̂; ŷÞ, is generated by scaling the elements along the radial direction,
n, to the scaling centre, O, forming such an area, V e, where 0 6 n 6 1
applies (n = 0 at scaling centre; n = 1 at boundary). The crack open-
ing is modelled by 2 independent nodes, A and B in Fig. 1, at the
boundary. The crack faces OA and OB are generated by scaling these
nodes to the scaling centre and require no discretization as evident
in the figure. This is one of the many distinguishing attributes of the
SBFEM for fracture applications. Coincidentally, n and g are called
the scaled boundary coordinates. To avoid the Jacobian of the scaled
boundary coordinate transformation approaching zero, the acute
angle, a, formed by any radial line and the boundary should not
be too small. Numerical investigations within this paper show that
the results are not sensitive to the angle given that it is larger than 5�
and the mesh on the boundary is sufficiently fine to represent the
displacement variation along the circumference.

The scaled element, Se, is isolated in Fig. 2 with end nodes 1
(g = �1) and 2 (g = +1) indicated. Nodal displacement functions,
{u(n)}, are introduced along the radial lines passing through the
scaling centre, O, and the nodes on the boundary, while along
the circumferential direction, g, the displacements can be interpo-
lated by,

fuðn;gÞg ¼ ½NðgÞ�fuðnÞg; ð1Þ

where [N(g)] are nodal shape functions defined in the local
direction, g. Applying a weighted residual technique in the same
direction (see [28]) or the virtual work principle (see [44]) then
leads to the following scaled boundary finite element equation in
displacement,
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Fig. 1. Scaled boundary transformation.

O

1

ξ

η

ŷ
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Fig. 2. Displacement of element Se in scaled boundary coordinates.
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