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a b s t r a c t

The dynamic stiffness method for composite plate elements based on the first order shear deformation
theory is implemented in a program called DySAP to compute exact natural frequencies and mode shapes
of composite structures. After extensive validation of results using published literature, DySAP is subse-
quently used to carry out exact free vibration analysis of composite stringer panels. For each example, a
finite element solution using NASTRAN is provided and commented on. It is concluded that the dynamic
stiffness method is more accurate and computational efficient in free vibration analysis than the tradi-
tionally used finite element method.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The investigation of free vibration behaviour of thin-walled
composite structures plays an important role in structural design.
Amongst many other applications, the natural frequencies and
mode shapes are essentially required to avoid resonance, to predict
the dynamic response and to study sound transmission. For thin
composite structures, bending or out of plane vibration occurs at
relatively lower frequencies than the inplane or membrane ones.
For this reason, bending vibration has been extensively covered
in the literature [1].

Although out of plane vibrations are of great importance, inplane
vibrations can also be important for various applications, e.g. sound
transmission, plate systems transmitting inplane forces, or plates
subjected to tangential forces, such as the ones produced by the
boundary flow of a fluid. Despite this, in plane free vibration analysis
of plates has received relatively little attention in the literature. For
isotropic plates, in plane free vibration has only recently been stud-
ied with some success in [2–5] and in particular, using the dynamic
stiffness method [6]. Far less attention has been paid to inplane free
vibration of composite plates. A recent contribution to the literature
on the subject is by Woodcock et al. [7] where the Rayleigh–Ritz
method is used to compute the natural frequencies of a single layer
composite square plate for different ply orientations.

For thick composite plates, bending and inplane modes can both
occur within the first 10 natural frequencies. It is thus instructive
that both of the two motions are studied together. No publication

in the literature has so far been identified which deals with both
bending and inplane free vibrations of composite plates in an exact
manner, particularly including shear deformation and rotatory
inertia.

The essential purpose of this two-part paper is not to show in
particular, how much difference the effects of shear deformation
and rotatory inertia makes to the natural frequencies and mode
shapes of a laminated composite plate when using the first order
shear deformation theory as opposed to classical plate theory be-
cause there are literally dozens of papers in the literature dealing
with this subject which have made such assessments [8–18]. It is
obviously clear and well known from published literature that
the effects could be significant, particularly for thick composite
plates, and the importance of the topic becomes even more acute
because fibre reinforced composites having low shear moduli are
sensitive to the shear deformation effects, unlike isotropic materi-
als. The main purpose of this paper is thus to give a new method-
ology to deal with the free vibration problems of laminated
composite plates using the dynamic stiffness method based on
the first order shear deformation theory as a more accurate and
efficient alternative to the commonly used finite element method
(FEM) [19] rather than pin-pointing the difference in results when
using classical plate theory (CPT).

In Part I [20] of this two part paper, a more efficient method to
investigate the free vibration behaviour of composite plates has been
presented. This method is the dynamic stiffness method (DSM) which
has been developed for laminated plates based on the first order
shear deformation theory for both bending and inplane vibration.
The theory has been implemented in a computer program called
DySAP, written in MATLAB enabling the computation of exact natural
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frequencies and mode shapes of complex structures modelled as
composite plate assemblies.

In this second part, attention is focused on results. First the
dynamic stiffness elements presented in [20] are validated against
exact results available in the literature. This has been possible for
simple square or rectangular composite plates. In order to demon-
strate the efficiency and accuracy of the present method, the results
are also compared to approximate solutions obtained by the com-
mercially available FEM package NASTRAN. For bending vibration,
the results are discussed in Section 2.1, whereas for inplane vibra-
tion they are discussed in Section 2.2. For thick plates showing both
bending and inplane modes within the first 10 natural frequencies,
Carrera’s Unified Formulation (CUF) has been used [8–12] for com-
parison purposes since it provides analytical results in contrast to FE
based numerical ones.

The developed theory has been further used to compute the ex-
act natural frequencies and mode shapes of stringer panels (Section
3) so as to demonstrate the application of the theory to real struc-
tures. The exact results of such structures have never been reported
before in the literature. The results from the present theory are also
compared with approximate results obtained using NASTRAN.
Finally, the efficiency, accuracy and versatility of the DSM when
studying the free vibration behaviour of real composite structures
are demonstrated.

2. Validation of results for simple composite plates

2.1. Free vibration in bending

The out of plane (or bending) free vibration analysis of a compos-
ite square plate is first carried out to validate the theory. The relative
material properties, plate dimensions, and laminate lay-up are as
follows: E1/E2 = 40, h/a = 0.1, a = b = 1m, G12 = G13 = 0.6E2, G23 =
0.5E2, m12 = 0.25, k = 5/6 and lay-up = [0/90/0].

The first 6 natural frequencies of the plate are shown in Table 1
for different boundary conditions (S simply supported, C clamped,
F free). The dimensionless natural frequency parameter
(x� ¼ xa2=h

ffiffiffiffiffiffiffiffiffiffiffi
q=E2

p
) together with the corresponding semi-wave-

length numbers (m and n) are given and the results are compared
with those available in the literature [21,22] for validation purposes.
Approximate results obtained using CQUAD4 NASTRAN elements
are also shown. The comparative exact results from the literature
[21,22] are based on the so-called classical method (CM) which uses
a Navier’s or Levy’s type solution and imposes zero or non-zero
boundary conditions for displacements and/or forces. This approach
can only be used to solve simple plates and cannot be easily ex-
tended to structures with complex geometry unlike the DSM. In Ta-
ble 1, it can be seen that there is total agreement between the
solution obtained using DySAP and the exact results reported in
the literature [21,22] in which only the first three natural frequen-
cies are quoted. It can also be observed in Table 1 that NASTRAN
consistently produces conservative estimate of the natural frequen-
cies with errors ranging from �0.3% to �6.2% on the first 6 natural
frequencies. Understandably, the error would increase for higher
natural frequencies. This can be attributed to the fact that the FEM
gives an approximate solution for the total elastic energy and since
a higher energy is associated with higher modes, a greater error is
expected. In Fig. 1 some representative modes obtained by using
DySAP are compared with those obtained from the FEM analysis.
It can be seen that there is excellent agreement between the FE re-
sults and the DySAP ones. It should be noted that DySAP results are
mesh independent and the mesh used in Fig. 1 is merely a plotting
grid for convenience.

Further validation cases can be found in Table 2 where a simply
supported square plate is used as an example. The material
properties and dimensions of the plate are: G12 = G13 = 0.6E2,
G23 = 0.5E2, m12 = 0.25, k = 5/6, lay-up = [0/90/90/0], h/a = 0.2,
a = b = 1m. Separate analyses have been carried out for different

Table 1
First 6 dimensionless bending frequencies x� ¼ xa2=h

ffiffiffiffiffiffiffiffiffiffiffi
q=E2

p
for a square composite plate with different boundary conditions. Exact results from [21,22]. FEM results by

NASTRAN (mesh 50 � 50 CQUAD4 elements). DySAP results are mesh independent. Some of the frequencies have been either not shown (n/s) or missed (m) in the published
literature.

Mode SSSS SSSC

Exact [21] DySAP FEM Exact [21] DySAP FEM

x⁄ m n x⁄ x⁄ (error %) x⁄ m n x⁄ x⁄ (error %)

1 14.766 1 1 14.766 14.716 (�0.3) 17.175 1 1 17.175 17.059 (�0.7)
2 22.158 2 1 22.158 21.718 (�2.0) 23.677 2 1 23.676 23.241 (�1.8)
3 36.900 3 1 36.900 34.945 (�5.3) 37.720 3 1 37.720 35.814 (�5.1)
4 n/s 1 2 37.380 37.072 (�0.8) n/s 1 2 38.326 37.976 (�0.9)
5 n/s 2 2 41.158 40.728 (�1.0) n/s 2 2 41.942 41.495 (�1.1)
6 n/s 3 2 50.896 49.268 (�3.2) n/s 3 2 51.461 49.853 (�3.1)

SCSC SFSF

Exact [21] DySAP FEM Exact [22] DySAP FEM

x⁄ m n x⁄ x⁄ (error %) x⁄ m n x⁄ x⁄ (error %)

1 19.669 1 1 19.669 19.490 (�0.9) 4.343 1 1 4.343 4.302 (�0.9)
2 25.349 2 1 25.349 24.915 (�1.7) missed 1 2 6.262 6.201 (�1.0)
3 38.650 3 1 38.650 36.795 (�4.8) 16.212 2 1 16.212 15.675 (�3.3)
4 n/s 1 2 39.082 38.700 (�1.0) missed 2 2 18.175 17.619 (�3.1)
5 n/s 2 2 42.585 42.125 (�1.1) missed 1 3 30.340 30.307 (�0.1)
6 n/s 3 2 51.938 50.347 (�3.1) 33.186 3 1 33.186 31.121 (�6.2)

SSSF SFSC

Exact [22] DySAP FEM Exact [22] DySAP FEM

x⁄ m n x⁄ x⁄ (error %) x⁄ m n x⁄ x⁄ (error %)

1 4.914 1 1 4.914 4.869 (�0.9) 7.331 1 1 7.331 7.296 (�0.5)
2 16.742 2 1 16.742 16.200 (�3.2) 17.558 2 1 17.557 17.045 (�2.9)
3 missed 1 2 21.670 21.627 (�0.2) missed 1 2 23.172 23.066 (�0.5)
4 missed 2 2 27.881 27.499 (�1.4) missed 2 2 28.961 28.566 (�1.4)
5 33.644 3 1 33.644 31.579 (�6.1) 34.019 3 1 34.019 31.981 (�6.0)
6 n/s 3 2 41.057 39.220 (�4.5) n/s 3 2 41.721 39.918 (�4.3)
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