
A consistent iterative scheme for 2D and 3D cohesive crack analysis
in XFEM
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a b s t r a c t

This paper presents a consistent algorithm for cohesive crack modeling with the extended finite element
method (XFEM). A new formulation for the transformation from global to local quantities for the cohesive
law is presented. This formulation works as a generic shell around any cohesive law so that the cohesive
law needs only to be implemented in two dimensions while it can be used in both two and three
dimensional analysis. Particular attention is paid to consistent linearization of the contribution
from the cohesive tractions. The proposed formulation is tested on three relevant examples of three-
dimensional analysis.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Engineering structures have to be analyzed with respect to their
failure possibilities in order to ensure their safety. Tensile stresses
are particularly dangerous to many materials because they may
cause decohesion of the material due to a gradual loss of micro-
structural load-bearing capacity. Eventually a crack appears where
displacements are not continuous on the structural level of obser-
vation. The analysis of fracture problems is usually carried out with
either damage mechanics or fracture mechanics. In linear elastic
fracture mechanics, the failure of a material is characterized by
the growth of a discrete crack through an otherwise intact
medium. In most materials, however, the real crack is preceded
by the so-called fracture process zone where tensile stresses
decrease. The materials where the fracture process zone is not
negligibly small are usually called quasi-brittle materials. An accu-
rate description of the failure of such materials requires that the
fracture process zone is taken into account in the analysis. A
popular way to do this is with the so-called cohesive crack model
[1–3]. In the cohesive crack model it is assumed that near the crack
tip tractions act from one crack face to the other. These tractions
decrease as the crack opening increases and eventually the crack
becomes traction-free.

Computational modelling of the crack process was usually
carried out by finite element method (FEM) e.g. [4,5]. The
element–free Galerkin method (EFGM) was also used in

application of crack growth analysis (e.g. [6–9]), or the method
based on coupled FEM–EFGM (e.g. [10,11]). Nowadays the meth-
ods based on partition of unity method (PUM) are seen as the most
accurate technology for crack propagation analysis. The extended
finite element method (XFEM) is the most widely used [12–15],
but extended EFGM can also applied [16,10].

The main advantage of computer methods based on PUM is the
fact that arbitrary functions can be incorporated in the approxima-
tion. In the case of fracture analysis, the Heaviside step function is
used to incorporate the discontinuity over the crack surface. An
arbitrary number of additional functions can be used in the formu-
lation, which is why additional enrichment functions are some-
times used near the crack tip [12,17,11,18–21]. These additional
enrichment functions usually refer to an analytical solution for
the displacement field around the crack tip. In the cohesive crack
model there is no singularity at the crack tip and therefore the
crack tip enrichment with singular functions is not necessary. With
cohesive methods, a stress criterion is used for crack initiation,
while the fracture toughness plays a role in the propagation
through the cohesive law. This combined approach with fracture
stress and toughness as material parameters is typical for quasi-
brittle materials.

In the cohesive crack model, cohesive forces act along the crack
in a fracture process zone. At every point on the crack surface,
there is a crack opening vector that can be decomposed into the
normal wn and sliding ws parts, where normal and sliding
directions refer to the crack orientation. In most analyses, the
cohesive forces act in the normal direction and are described by
a constitutive cohesion law in terms wn. When mixed-mode crack-
ing is analyzed, additional forces that resist the sliding deformation
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tudelft.nl (F.P. van der Meer).

Computers and Structures 136 (2014) 98–107

Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate/compstruc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruc.2014.01.029&domain=pdf
http://dx.doi.org/10.1016/j.compstruc.2014.01.029
mailto:j.jaskowiec@L5.pk.edu.pl
mailto:F.P.vanderMeer@   tudelft.nl
mailto:F.P.vanderMeer@   tudelft.nl
http://dx.doi.org/10.1016/j.compstruc.2014.01.029
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc


between the crack faces can come into play. Then, an additional
constitutive law is set for these sliding forces which depend on
both crack opening parts wn and ws as in [13]. Sometimes the total
crack opening is used to construct the cohesion traction-separation
law (e.g. [8,18,22]). In this paper, the general assumptions are
made that normal and sliding cohesion forces are taken into ac-
count and that both depend on wn and ws. Based on these assump-
tions general relations are derived.

The cohesive crack propagation analysis is a nonlinear problem.
Firstly, the nonlinearity of the process is connected with the prop-
agation of the discontinuity. It results in a decrease in the stiffness
of the structure. Secondly, the cohesion forces along the crack de-
pend on the actual solution. In order to find the solution of this
nonlinear problem, a Newton–Raphson scheme must be applied,
which means that the state in which internal forces are in equilib-
rium with external forces is found iteratively. This iterative
procedure is most effective when a tangential stiffness matrix is
calculated. Therefore, a procedure is needed to linearize the
relation between cohesive forces and the crack opening vector.

The tangential stiffness matrix includes a second order tangent
cohesive stiffness matrix C from the cohesion traction-separation
law and the shape functions jump. This kind of matrix was used
for example in [13–15,23] but it was evaluated for standard XFEM
formulation with the Heaviside step function and basic cohesion
constitutive law. In [18] the tangent matrix was evaluated for local
coordinate system connected with the crack line. A more general
idea was proposed in [11,16] where the matrix was developed by
differentiating the cohesion force vector with respect to displace-
ment jump vector in the global coordinate system which was
applied to mode I cohesive cracks. In this paper the relations from
[11] are generalized to cracks in three dimensions (3D) with gen-
eral cohesive constitutive laws. The tangent matrix is evaluated
in global coordinate system, while the cohesive law is evaluated
in a two-dimensional (2D) local coordinate frame aligned with
the crack surface.

In the past decade there are plenty of works concerning fracture
simulation by XFEM. Some example analysis of three-dimensional
crack analysis can be found in [24–26] while recent developments
connected with cohesive crack models have been presented in
[27–33]. A review of XFEM has been given in [9].

The paper is organized as follows: In Section 2 a mathematical
model for the quasi-static cohesive cracking problem is developed.
In Section 3 a new approach is presented for calculating and
applying cohesion forces in cracks in 2D and 3D. The presented
algorithm is verified by examples presented in Section 4. In
Section 5 conclusions are presented.

2. Mathematical model

The computational model in the paper is derived for full 3D
case. However, the relations that are derived below can however
be simplified to the 2D case in a plane stress or plane strain state.
It is assumed that:

1. strains and displacement are small,
2. the relation between stress and strain is linear,
3. there is a crack in the body denoted by Sd. In 3D the crack

is a curved plane, in 2D the crack is a curved line,
4. along Sd the displacement field is discontinuous,
5. there is a fracture process zone in the crack that is mod-

eled by cohesion forces tc.

In the paper Voigt notation is used for stress r, strain e and
matrix m representing the normal to the surface of the analyzed
body.

The analysis begins with the standard equilibrium equation
(momentum balance) that is valid at each point of the considered
isotropic solid and for each moment of time:

LTrþ b ¼ 0 in V ; ð1Þ

where b is the body force vector and L a matrix of differential
operators.

The equation is completed by the standard boundary conditions
and equilibrium conditions for the crack plane:

mTr ¼ t on Sr;

u ¼ û on Su;

mT
dr ¼ tc on Sd;

ð2Þ

where t is the vector of external tractions, u is the displacement
vector, û is the vector of prescribed displacements, md represents
the normal to the crack surface in Voigt notation, and tc is the vector
of cohesive forces along the crack surface.

The local mathematical model from Eqs. (1) and (2) is reworked
into a global weak formulation using the weighted residual
approach, where a test function vu is used. The test function vu

and displacement field u are discontinuous in Sd. Therefore Dirac’s
delta appears in Sd while differentiating the fields

Lu ¼
Lu if x R Sd;

dSd
mdsut if x 2 Sd:

(
ð3Þ

where:

dSd
– Dirac’s delta along crack Sd,

md – normal to Sd in Voigt notation,
s � t – function discontinuity operator.

Supposing that nd is a normal vector to Sd in x 2 Sd, the discon-
tinuity of the test function (or any other quantity) is

svutðxÞ ¼ lim
k!0

vuðxþ kndÞ � lim
k!0

vuðx� kndÞ ¼ vþu ðxÞ � v�u ðxÞ: ð4Þ

In that case the equilibrium equation in weak form at time
t þ Dt isZ

V
Lvuð ÞTrtþDt dV þ

Z
V

dSd
svut

TmT
dr

tþDt dV �
Z

V
vT

ubtþDt dV

�
Z

Sr

vT
uttþDt dS ¼ 0; ð5Þ

where t is the pseudo-time connected with the external forces that
is usually used in quasi-static analysis, dSd

is Dirac’s delta along
crack Sd.

With the definition of Dirac’s delta, the weak formulation can be
rewritten as:Z

V
ðLvuÞTrtþDt dVþ

Z
Sd

svut
TttþDt

c dS�
Z

V
vT

ubtþDt dV�
Z

Sr

vT
uttþDt dS¼0: ð6Þ

where tc depends on the discontinuity in the displacements, sut,
that is referred to in this paper as the crack opening vector.

For the solution of the nonlinear system of equations the
standard incremental-iterative procedure is applied. It is supposed
that all quantities are known for time t. The displacement in time
t þ Dt is then defined as the sum of the displacement at time t and
an unknown increment

utþDt ¼ ut þ Du: ð7Þ

The displacement increment Du is computed iteratively and it can
be defined as the limit of a sequence, where an element of the se-
quence is then calculated by adding a corrective increment du to
the previous element of the sequence:

Du ¼ lim
i!1

Dui; Duiþ1 ¼ Dui þ du: ð8Þ
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