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a b s t r a c t

At mid- and high-frequency bands, displacement-based approaches such as the finite element method
(FEM) create too large models, while energy-based methods, such as statistical energy analysis, produce
smaller ones, but without spatial variation. Energy flow analysis (EFA) can produce compact models that
include spatial variation; however, their analytical solution makes them difficult to handle for built-up
structures. To overcome this issue, the energy finite element method (EFEM), a finite element solution
of EFA, was proposed. A more accurate alternative to EFEM is the energy spectral element method
(ESEM). It is a matrix methodology applied to EFA similar in style to FEM, with one significant difference
being the use of the analytical solution as interpolation functions. Simulated results obtained by EFEM
and ESEM are analysed and compared with each other and with the spectral element method, which is
used as a reference.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Several vibroacoustic prediction tools have been developed for
mid- and high-frequency ranges; a commonly used technique is sta-
tistical energy analysis (SEA) [1]. However, a primary drawback to
SEA is to provide only one energy level for each subsystem. It is gen-
erally accepted that energy flow analysis (EFA) improves SEA, since
it allows the spatial variation of energy within each subsystem.
Originally proposed by Wholever and Bernhard [2] for structures
like rod and beam, EFA’s formulation is based on the analogy be-
tween mechanical and thermal energy flow. It provides an approx-
imate analytical energy solution with far fewer parameters and less
computational effort than the exact analytical energy solution using
displacement formulations. Studies on EFA have been extended to
flexural waves in thin plates, membranes, and vibroacoustic prob-
lems [3–5].

As an alternative to the analytical solution, the EFA differential
equations can be solved with standard finite element approxima-
tions; this approach is called the energy finite element method
(EFEM). EFEM has been applied to structures like rod, beam, mem-
brane, plate, and acoustic cavity [3,5,6].

The spectral element method is a technique relatively new
which is similar to FEM in some aspects, mainly because of the ma-
trix methodology employed. The difference between them is on the
numbers of elements used to analyse a structural problem. In the

SEM the number of elements used only need to coincide with the
number of discontinuities present at the structure to be analysed.
It can be shown that one spectral element is equivalent to an infi-
nite number of finite elements [7].

Proposed originally by Santos et al. [9] for structures like rod and
beam, the energy spectral element method (ESEM) consists basi-
cally into apply the same FEM matrix methodology to the energy
flow analysis, but using the analytical solution as form functions.
In this paper, an application of ESEM to flexural wave propagation
in thin plates is presented. The method has the advantage of model-
ling only the energy variation, which is smoother than the displace-
ment variation and operates efficiently over a large frequency range.
ESEM is also able to maintain the accuracy of the energy density
over the entire member space domain, provided there are sufficient
modes in the frequency band of interest [10]. For the plate-type
spectral element, the accuracy and sensitivity of the dynamic
response can be monitored by the average frequency and the super-
position of harmonics. The method applies to the mid- and high-
frequency range, where displacement approaches are expensive
and the SEA solution does not provide sufficient details for the
spatial behaviour. However, there are still some issues in the use
of ESEM for modelling plate elements with non-uniform geometry
and the application of arbitrary boundary conditions. Furthermore,
the solution of ESEM is an approximation in comparison with SEM,
due to using the energy differential approximate equation on the
matrix methodology of SEM.

In this work, the accuracy of ESEM and EFEM simulated results
are verified by comparing them with the results from the spectral
element method (SEM), developed by Doyle [7]. SEM is the exact
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analytical solution of the wave equation in the frequency domain,
and uses a displacement formulation tailored with the matrix
approach from the finite element method. SEM is appropriate as
reference method, since the wave propagation in its members is
accurately expressed. Simulated results obtained by ESEM and
EFEM are also compared in order to evaluate the performance
between these two different energy methods.

This paper is an updated and revised version of an earlier con-
ference paper [8], and includes a more detailed and comprehensive
formulation for the three methods (EFEM, ESEM, and SEM). An
additional simulated example is presented consisting of two thin
plates with a coplanar connection; where the discontinuity is not
based on different plate thicknesses but on different plate material
properties. Results for the energy density and energy flow calcu-
lated by all methods are compared and discussed.

2. Energy governing equations for thin plates

This section presents the fundamental theory for the energy
density and energy flow (intensity) distributions in uniform thin
plates, as used in energy-based and displacement-based methods.

2.1. Energy flow analyses

First, energy-based methods applied to transversally vibrating
finite plates are briefly reviewed [3]. The classical governing dis-
placement equation for a thin plate with hysteretic structural
internal damping can be written as [7]:

Dcr4wðx; y; tÞ � qh
d2wðx; y; tÞ

dt2 ¼ pðx; y; tÞ; ð1Þ

where w is the out-of-plane plate displacement along the z-direc-
tion, q is the mass density, h is the plate thickness, and p is the exci-
tation force. The complex flexural rigidity is given by

Dc ¼
Ech3

12ð1� m2Þ ; ð2Þ

where m is Poisson’s ratio, Ec = E(1 + ig) is a complex Young’s modu-
lus with a structural internal damping loss factor g, and i =

ffiffiffiffiffiffiffi
�1
p

.
Although solutions to Eq. (1) are available in the literature for differ-
ent boundary conditions, a complete and general solution in closed
form is not known. By applying the Fourier transform to both sides
of Eq. (1), its spectral representation can be written as

Dcr4ŵðx; yÞ � qhx2ŵðx; yÞ ¼ p̂ðx; yÞ; ð3Þ

where ^ denotes that the function has been Fourier transformed.
The homogeneous form of Eq. (3) can be factored as

r2 þ k2
c

� �
r2 � k2

c

� �
ŵðx; yÞ ¼ 0; ð4Þ

where k2
c ¼ ðx2qh=DcÞ1=2 is the complex wave number. To analyse

the energy flow in plates at mid- and high-frequencies, the far-field
assumption [13] can be applied to the harmonic solution of the
homogeneous form of Eq. (3), to obtain:

ŵðx; yÞ ¼ Axe�ikxx þ Bxeikxx
� �

Aye�ikyy þ Byeikyy
� �

; ð5Þ

where Ax, Bx, Ay, and By are arbitrary constants. For a small loss factor
(g� 1), the wave number components of kc are kx = kx1(1 � ig/4) and

ky = ky1(1 � ig/4), where k2
x1 þ k2

y1 ¼ k2
c must be satisfied. Since the

far-field solution only satisfies the factored left hand side of Eq. (4),
it is an incomplete displacement solution of Eq. (3). For harmonic
excitation, the time-averaged energy density for a flexural wave in
a thin plate can be written as a sum of the potential and kinetic en-
ergy densities [3],

heðx;yÞi¼1
4
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where ⁄ represents the complex conjugate and D is the real part of a
complex flexural rigidity. The corresponding time-averaged energy
flow in the x- and y-directions can be written, respectively, as:

hqxi¼
1
2
R ixD
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@ŵ�

@y
�ð1�mÞ @

2ŵ
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where R is the real part of a complex number. The far-field energy
density and energy flow can be obtained by substituting Eq. (5) into
Eqs. (6) and (7), but their expanded expressions display no apparent
relationship. Nevertheless, reduced expressions can be obtained by
neglecting all terms of g2 and higher, as well as terms containing
sinusoidal functions of the wave number. These last simplifications
are equivalent to spatial averaging. For conciseness, these expanded
and reduced expressions are not shown here, but they are found in
[3]. The reduced expressions reveal that the energy density and en-
ergy flow are related as:

h�qðx; yÞi ¼ �
c2

g

gx
rh�eðx; yÞi; ð8Þ

where - denotes a space-average, and cg = 2[x2(D/qh)]1/4 is the
group speed. From the energy conservation principle the steady-
state structural energy distribution can be stated as:

rqðx; yÞ ¼ �Pdiss; ð9Þ

where Pdiss is the power dissipated in the medium. The power can
be considered proportional to the energy density [1]:

Pdiss ¼ gxeðx; yÞ: ð10Þ

From Eqs. (8)–(10), and considering an external input power
P(x,y), the energy equation for the far-field space and time aver-
aged energy density of a thin plate, can be written as:

r2 c2
g

gx
h�eðx; yÞi � gxh�eðx; yÞi ¼ Pðx; yÞ: ð11Þ

Fig. 1. Levy-type rectangular flat plate spectral element.

Fig. 2. Levy-type rectangular flat plate energy spectral element.
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