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a b s t r a c t

This paper presents an improved sequential approximation optimization (SAO) algorithm that is suitable
for structural design optimization tasks. First, an adaptive sampling strategy is proposed to balance
between the competence to locate the global optimum and the computation efficiency in the optimiza-
tion process. Furthermore, an original estimation of the width of the basis function is proposed based on
the local density of sampling points, which enhances the RBF for the SAO. The efficacy of the enhanced
SAO algorithm is validated using several benchmark structural design cases and the computing costs
are substantially reduced in comparison to other optimization algorithms.
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1. Introduction

Structural design optimization remains an important and chal-
lenging topic in the engineering design of lighter, more effective
structures [1]. Design optimization aims to determine the optimal
shape of a structure by maximizing or minimizing a given criterion,
such as stiffness or weight, subject to stress or displacement con-

straints. Over the past decade, a number of optimization algo-
rithms have been extensively used in structural optimization
tasks, such as gradient-based algorithms, evolutionary algorithms
(EAs) and approximation-based optimization algorithms [2]. Of
course, advantages and disadvantages are associated with any
optimization technique.

Several examples of gradient-based optimization applied to
structural design problems exist in the literature [3–6]. SQP
(Sequential Quadratic Programming) [6], as one of the gradient-
based optimization techniques, is integrated in the commercial
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CAE software such as ANSYS [7] and widely used in structural de-
sign tasks because of its high computational efficiency. However,
gradient-based optimization techniques are extremely sensitive
to the initial guess and prone to trapping in local optima. In prac-
tical structural design tasks, designers usually have no idea about
the global optimum or even the promising areas for global opti-
mum. Therefore, the selection of a proper initial design for SQP is
difficult.

In the past few decades, structural design optimization prob-
lems have been increasingly solved by EAs such as the genetic
algorithm [8], simulated annealing [9], particle swarm optimiza-
tion [10,11] and the artificial bee colony algorithm [12]. EAs
present several advantages over gradient-based methods: (a)
the objective function need not be continuous, nor even avail-
able in algebraic form, (b) EAs more easily escape from local op-
tima, and (c) no specific domain information is required,
although this information can be exploited if available. Draw-
backs of these methods are the huge number of function evalu-
ations required. The resulting low computational efficiency
precludes their direct application to structural design optimiza-
tion problems [2,13].

In approximation-based optimization techniques, or meta-
modeling techniques, objective functions are expressed as low or-
der polynomial approximations to explicit functions. The accuracy
of these techniques is acceptable and the computational cost is
much reduced. Commonly applied approximation techniques in-
clude the response surface method [14,15], neural network
[16,17], polynomial regression models [18], Kriging methods [19]
and the radial basis function (RBF) [20] method. In addition to their
computational efficiency, approximation techniques are easily
connected to simulation programs, enabling a view of the entire
design space. On the downside, these techniques introduce error
into the meta-model, which reduces their reliability.

In general, structural optimization processes require all of the
following attributes: reduced computational cost, generality,
robustness, and accuracy [21]. To meet these requirements,
researchers are increasingly adopting the sequential approximate
optimization (SAO) approach [22,23]. Unlike the classical approxi-
mation-based optimization procedure summarized by Kitayama
et al. [24], SAO first conducts a small-size design of experiment,
using various approximate techniques to construct a surrogate.
The global optimum of the surrogate is then found by optimal opti-
mization methods such as EAs. The SAO algorithm terminates
when a specified termination criterion is satisfied. Otherwise, the
accuracy of the response surface is improved by adding several
new sampling points. This iterative process converges to a highly
accurate global optimum after far fewer function evaluations than
are required by EAs.

The SAO algorithm has been recognized as one of the most
attractive approaches for engineering optimization [2,25]. How-
ever, because SAO is an emerging concept, a reliable and robust
SAO algorithm suitable for mechanical engineering projects re-
mains lacking. The success of an SAO algorithm depends chiefly
on the approximation technique and the sampling strategy. There-
fore, this paper focuses on improving these two key elements to
the extent that SAO becomes applicable to structural design opti-
mization problems. The paper is structured as follows: Section 2
introduces the general formulation of the SAO approach, and pro-
poses an adaptive sampling strategy and a new method for deter-
mining the width of the basis function in the RBF network. Finally,
the framework of the proposed SAO algorithm is presented and the
algorithm is validated by a simple numerical test. Section 3 pre-
sents various structural optimization case studies, which are used
to demonstrate the efficacy of the approach in obtaining optimal
structural optimization solutions. Concluding remarks are pre-
sented in Section 4.

2. Sequential approximation optimization

2.1. General framework of the sequential approximation optimization
approach

Let us consider a general structural optimization problem with
constraints

find X;
min f ðXÞ;
s:t: giðXÞ 6 0 i ¼ 1;2; . . . ; l;

hjðXÞ ¼ 0 j ¼ 1;2; . . . ; k;

XL
6 X 6 XU :

ð1Þ

Here XL and XU is the upper and lower bound of design variables,
respectively. For most structural design problems, the objective
function and constraints are implicit functions of design variables,
usually obtained by finite element analysis (FEA). Since the com-
putational cost for FEA may be high, the number of analyses car-
ried out during the optimization has the main impact on the
efficiency of the algorithm. This has initiated the development of
optimization techniques that are suitable for structural design
problems [6].

In the classical approximation-based optimization procedure
summarized in [24], the accuracy of the surrogate model could
be degraded by an ill-chosen initial sample, leading to a decep-
tively positioned optimum. Here we assume that our optimum
design is the best result of the true function, not that of the sur-
rogate. Results from the surrogate are therefore evaluated by
comparison with the true function evaluations. Additional calls
to the true function are used to both validate the surrogate
and enhance its accuracy. Thus, the developed SAO approach se-
lects the new points at which the true function is called. The
general framework of the SAO approach is presented in Fig. 1.
Applying a series of new infill points based on some infill criteria
(also known as a sampling strategy), the objective function is
sampled using a constantly changing surrogate model [26]. As
mentioned above, appropriate approximation technique and sam-
pling strategy are imperative for successful SAO optimization.
The SAO-based structural optimization can be mathematically
expressed as

Fig. 1. General framework of the sequential approximation optimization.

76 D.H. Wang et al. / Computers and Structures 134 (2014) 75–87



Download English Version:

https://daneshyari.com/en/article/510979

Download Persian Version:

https://daneshyari.com/article/510979

Daneshyari.com

https://daneshyari.com/en/article/510979
https://daneshyari.com/article/510979
https://daneshyari.com

