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Numerous forecast combination techniques have been proposed. However, these do not systematically outper-
form a simple average (SA) of forecasts in empirical studies. Although it is known that this is due to instability
of learned weights, managers still have little guidance on how to solve this “forecast combination puzzle”,
i.e., which combination method to choose in specific settings. We introduce a model determining the yet un-
known asymptotic out-of-sample error variance of the two basic combination techniques: SA, where no
weightings are learned, and so-called optimal weights that minimize the in-sample error variance. Using the
model, we derive multi-criteria boundaries (considering training sample size and changes of the parameters
which are estimated for optimal weights) to decide when to choose SA. We present an empirical evaluation
which illustrates how the decision rules can be applied in practice. We find that using the decision rules is supe-
rior to all other considered combination strategies.
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1. Introduction

The combination of forecasts has been subject to research in eco-
nomics since the pioneering work of Reid (1968) and Bates and
Granger (1969). Numerous studies show that the combination of fore-
casts often results in increased accuracy in comparison to any of the
forecasts alone (Makridakis et al., 1982; Clemen, 1989; Makridakis &
Hibon, 2000; Fildes & Petropoulos, 2015). Various techniques aiming
at deriving a weighting of individual forecasts which minimizes errors
out-of-sample have been proposed.

Bates and Granger (1969) introduced the so-called optimal weights
(OW). The weights are determined in a least squares estimation using
available past forecast error data. They are referred to as optimal as
they minimize the in-sample error variance; by design, OW outper-
forms any other linear weighting approach in-sample. However, the
out-of-sample performance is not necessarily superior since the esti-
mated weights are strongly fitted to the training data and are conse-
quently subject to sampling-based variance.

As a consequence, alternative weight estimation approaches have
been proposed. Clemen (1989); Diebold and Lopez (1996), and
Timmermann (2006) provided thorough literature reviews of the vari-
ous approaches to forecast combination. Approaches include variants
of optimal weights constrained to the interval [0,1], shrinkage towards
the average, Bayesian outperformance probabilities, and several more
approaches. Each of the alternative approaches outperformed OW as
well as other approaches out-of-sample in some evaluations, but are

outperformed in others. As no model exists to decide which of the ap-
proaches to choose and empirical results are ambiguous, there is no
clear consensus onwhich forecast combinationmethod can be expected
to perform best in a particular situation.

A surprising observation of the reviews was, however, that amongst
the approaches under study, the simple average (SA)was not systemat-
ically outperformed by any other approach in out-of-sample evalua-
tions. Stock and Watson (2004) coined the term “forecast combination
puzzle” for this phenomenon. Besides model-based forecasting, SA is
also competitive when combining expert predictions. For instance
Genre, Kenny,Meyler, and Timmermann (2013) found that for forecasts
of unemployment rate andGDP growth, only few combinationmethods
outperform SA, while their results caution against any assumption that
the identified improvements would persist in the future.

The forecast combination puzzle is in line with the more general
phenomenon that simpler forecasting procedures usually outperform
more complex techniques. Green and Armstrong (2015) reviewed 97
studies comparing simple and complex methods, concluding that
“none of the papers provide a balance of evidence that complexity im-
proves the accuracy of forecasts out-of-sample”. Simplicity in forecast-
ing procedures corresponds to using models where few different cues
are used and/or few parameters have to be estimated. Likewise, in fore-
cast combination,whereweights of forecasts instead of cues are chosen,
SA is the simplest model as – in contrast to more complex models such
as OW – no parameters are estimated at all.

Brighton and Gigerenzer (2015) argued that the benefits of simplic-
ity are often overlooked because of a “bias bias”, where the importance
of the bias component of the error is inflated. In contrast, the variance
component, resulting from oversensitivity to different samples from
the same population, is often ignored. Simpler approaches are typically
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more robust against different samples as the variance component is di-
rectly related to model complexity.

Simple averaging strategies have also been shown to be highly com-
petitive in applications besides forecast combination. For instance, for
venture capital decisions, Woike, Hoffrage, and Petty (2015) found
that the decision quality when using equally weighted binary cues is
comparable to more complex strategies, but even more robust. Graefe
(2015) argued that estimating coefficients (weights) of predictors in
multivariate models is only reasonable for large and reliable datasets
and few predictors. For small and noisy datasets and a large number
of predictors, the authors argued that including all relevant variables
is more important than the weighting.

In forecast combination, the robustness of SA has been an important
research topic and a considerable body of literature examines the fore-
cast combination puzzle theoretically and empirically. As will be
discussed in Section 2, results indicate that the robustness of SA stems
from unstable weight estimates from small training samples or diverg-
ing forecast error characteristics between the training and the evalua-
tion samples. In a broader sense, these findings support the “‘Golden
Rule of Forecasting”, stating that forecasts are to be conservative
(Armstrong, Green, & Graefe, 2015). That is because increasing asym-
metry of weights results in higher sensitivity to the results of one indi-
vidual forecast that is less counterbalanced by others.

Although these qualitative relations are known, managers still have
little guidance on which method to choose in a particular setting. More
specifically, we are not aware of any comprehensive quantitative deci-
sion guidance on when to choose OW or SA.

In this paper, we introduce a model for the expected out-of-sample
error variance of a forecast combination, in particular when using SA
and OW. Using the model, we derive multi-criteria decision boundaries
determining whether OW or SA will lead to lower asymptotic error
variance in a specific setting. Practitioners can furthermore use the
thresholds to assess the robustness of a decision.We show that existing
empirical guidelines can largely be explained by the model. Further-
more, in an empirical study with data from the M3 competition, we
demonstrate that the recommendations and the thresholds can be
used to implement successful combination decision strategies in practi-
cal settings.

2. Related work

A substantial amount of research has been conducted on the perfor-
mance and robustness of SA in comparison to other forecast combina-
tion methods. A basic and intuitive finding is that the performance of
SA depends on the ratio of the error variances of the forecasts as well
as on their correlation. SA can be expected to perform well in case of
similar error variances and low or medium error correlations (Bunn,
1985; Gupta & Wilton, 1987), since the weights which are optimal in
the evaluation sample then approach equal weights. However, as
shown by Dickinson (1973); Winkler and Clemen (1992), and Smith
andWallis (2009), SA can outperform other methods even for differing
error variances or strongly correlated errors because of instable weight
estimates. Elliott (2011) found that gains from using OW instead of SA
are often too small to balance estimation errors. Claeskens, Magnus,
Vasnev, andWang (2016) showed that weight estimation can even in-
troduce biases in combinations of unbiased forecasts.

Monte Carlo simulations by Kang (1986) and Gupta and Wilton
(1987) confirmed that unstable weight estimates are key to the high
competitiveness of SA. Evaluations on real-world data, for instance for
U.S. money supply forecasts (Figlewski & Urich, 1983) or GNP forecasts
(Kang, 1986; Clemen & Winkler, 1986) showed similar results.

Some guidelines to help decision-makers in selecting a combination
method have been proposed. In the case of two forecasts, Schmittlein,
Kim, and Morrison (1990) recommended SA for small sample sizes and
for errors with similar variances and weak correlation. De Menezes,
Bunn, and Taylor (2000) recommended SA only for approximately

equal error variances andOW for large samples and lowerror correlation.
In other cases, they suggested using outperformance probabilities (with
small samples and unequal error variances), optimalweights constrained
to the interval [0,1] (with medium or large samples and correlation over
0.5), or OW calculated with a correlation of zero instead of the estimated
correlation, i.e., assuminguncorrelated errors (withmediumsample sizes
and correlations below 0.5). Thresholds for similarity/dissimilarity of
error variances and sample size were, however, not quantified.

Both guidelines assume equal characteristics (error variances and
covariances) of known training and unknown (future) observations.
However, these characteristics might change over time because of
structural changes in time series, which might influence the perfor-
mance of OW and SA very differently. Miller, Clemen, and Winkler
(1992) showed that SA can, in comparison toOWand other approaches,
benefit from several types of structural breaks such as location shifts.
Diebold and Pauly (1987) found that structural changes generally tend
to impact complex approachesmore than simpler ones as the estimated
weights tend to increasingly differ from the ones that would minimize
error in the evaluation sample.

In this paper, in contrast to existing guidelines, we propose an ana-
lytical model to determine whether SA will asymptotically outperform
OW in a specific setting. We derive decision rules based on statistical
considerations that do not only consider sample size and variance/
covariance estimates, but also how much those values are allowed
to divergence between training and evaluation sample for a decision
to stay optimal. These thresholds are key to assessing the robustness
of a decision but have received scant attention in the literature so far.

3. Forecast combination

Given two forecasts ŷA and ŷB for an event y, a combined forecast can
be calculated by weighting both forecasts. The most common approach
is a linear combination of the forecasts using weightw to derive a novel
forecast ŷC ¼ wŷA þ ð1−wÞŷB. Assuming unbiased individual forecasts
with errors eA ¼ y−ŷA � Nð0;σ2

AÞ; eB ¼ y−ŷB � Nð0;σ2
BÞ and a corre-

lation ρ between eA and eB, Bates and Granger (1969) proposed optimal
weights (OW) minimizing the error variance of ŷC in-sample. The orig-
inal definition as well as an alternative one using the ratio of error stan-
dard deviations ϕ=σA/σB and the assumption σA=1 (which, in
combination, does not change the estimate) are presented in Eq. (1).

w ¼ σ2
B−ρσAσB

σ2
A þ σ2

B−2ρσAσB
¼ 1−ρϕ

1þ ϕ2−2ρϕ
ð1Þ

The in-sample error variance of a forecast combination with differ-
ent weights is illustrated in Fig. 1. The individual error variances σA

2=
1 and σB

2=4 are indicated by the dotted horizontal lines. The graph
shows the error variance resulting from combining forecasts with OW,
SA, and with static weights set to 1/ϕ (2:1 in the example).

When using OW, the combined error variance never exceeds the
lower of the two error variances. In contrast, the combined error vari-
ances with SA and a static 2:1 weighting are lowest for an error correla-
tion of−1 and linearly increase with error correlation. At some level of
error correlation, the combined error variance exceeds the one of the
better forecast (σA

2=1, in our case). However, the combined error var-
iance still never exceeds the higher error variance — in our case σB

2=4.
In summary, the difference between error variance with fixed weights
(SA or 2:1) and OW is small for strong negative correlations and strictly
increases with error correlation.

While OWcombination leads to lower in-sample error variance than
any other weighting scheme (especially weightings that ignore error
variances and error correlation in the training data), we reconsider
that SA often outperforms OW out-of-sample, indicating that the esti-
mated weights do not always fit unknown observations well.
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