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Abstract

The immersed boundary (IB) method is a mathematical formulation for fluid—structure interaction problems, where immersed incom-
pressible visco-elastic bodies or boundaries interact with an incompressible fluid.
The original numerical scheme associated to the IB method requires a smoothed approximation of the Dirac delta distribution to link

the moving Lagrangian domain with the fixed Eulerian one.

We present a stability analysis of the finite element immersed boundary method, where the Dirac delta distribution is treated varia-
tionally, in a generalized visco-elastic framework and for two different time-stepping schemes.
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1. Introduction

One of the main difficulties that arises when dealing with
visco-elasticity and fluid-structure interaction problems is
the fact that fluids and elastic materials have a different
“natural” framework.

The usual way of characterizing a fluid motion is the
Eulerian framework, where the system is described using
the velocity and pressure fields. On the other hand, when
dealing with elasticity, it is customary to express the stress
as a function of the displacements of the material particles
from their reference, or Lagrangian, position, which is not
directly available in the Eulerian formulation.

The immersed boundary method gives one way to link
the two frameworks together and deploy the strengths of
both formulations at the same time. The original IB formu-
lation (see [25] for an introduction on the subject) was
intended to simplify the study of the interaction between
thin membranes undergoing large deformations and fluids
described by the Navier-Stokes equations, by means of
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an approximation of the Dirac delta distribution, which
was used as an interpolation Kernel between the two
frameworks.

A finite element formulation of the problem was first
introduced in [21] and later developed in [32,34], where
the discretization of the fluid is done via the finite element
method and the passage from the Eulerian to the Lagrang-
ian domain is done via the Reproducing Kernel Particle
Method, to provide an approximation of the Dirac delta
distribution suitable for the finite element method.

A variational approach to the problem was introduced
in [2,3], where the Dirac delta distribution is no longer
needed as it is treated variationally through its action on
the test functions. The variational approach translates nat-
urally in a finite element formulation of the IB method
which was further developed in [4].

The original discretization of the interaction equations,
as proposed in [25], preserves mass, momentum, angular
momentum, torque and power, ensuring that in the conver-
sion between the two frameworks no spurious creation or
destruction of mass, momentum or energy is induced by
the numerical approximation. The introduction of the time
discretization however disrupts these conservation
properties.
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In [31], the authors present a comparison between three
different time approximation schemes, highlighting the dif-
ficulties related to the nonlinearity of the coupled problem.
A first attempt to analyze the stability properties of these
approximation schemes was introduced in [30] where the
authors present a stability analysis based on the study of
the modes of oscillation of a single straightened one-dimen-
sional fiber immersed in a two-dimensional fluid. The effect
of these modes of oscillation on the time-stepping schemes
was further analyzed by the same authors in [29].

In [5,7,8,6] the authors present a stability analysis that
takes advantage of the finite element formulation of the
problem and of the natural energy estimates inherited by
the variational analysis of the coupled system. The idea is
based on the requirement that the energy of the system
decreases at each time step, providing an effective CFL
condition for the coupled problem to remain stable with
respect to the fluid—structure interaction characteristics.

The extension to more general fluid-structure interac-
tion problems using the formulation derived in [25] was
limited to anisotropic elasticity due to the lack of a term
in the formulation that takes care of the continuity of the
stress between the solid body and the fluid.

In [10], the authors recognized this problem and pro-
posed a derivation of the IB method based on classical
hyper-elasticity theory (see, for example, [15]) where the
missing term was found to be of the same character of
the original singular term introduced for the study of thin
membranes.

In this paper, we review the finite element immersed
boundary (FEIB) method as introduced in [2-4,10] and
we generalize the results presented in [8] to take into
account general hyper-elastic materials, both in the thin
case of co-dimension one structures interacting with two-
or three-dimensional fluids as well as in the more general
framework of two- or three-dimensional structures inter-
acting with two- or three-dimensional fluids.

Sections 2 and 3 present briefly the IB method and the
hyper-elastic models that will be used. Section 4 present
the variational and finite element formulation of the IB
method, while in Sections 5 and 6 we present the time dis-
cretization and the generalized stability analysis for the
fully discrete problem.

Sections 7 and 8 present some numerical experiments
and conclusions.

2. The immersed boundary method

The formulation of the immersed boundary method that
we use in the following stability analysis is the one that was
derived in [10]. Some simplifying assumptions are made
that render the analysis more comprehensible, however a
generalization is possible following the same lines pre-
sented in this paper.

We study a region Q of R’ containing a fluid and an
immersed solid material. In particular we are interested in
the interaction between the two when the fluid is described

by the Navier-Stokes equations and the solid is described
by a viscous hyper-elastic model.

We identify the material particles contained in Q with
the set w C R of their position in a reference configuration
and we suppose that the subset Z C » C R identifies the
elastic body. The coordinate system in this Lagrangian
framework is given by the vector variable s. When s € %
it marks a solid particle, while if s € w \ # it identifies a
fluid particle.

We fix a coordinate system for the physical space where
the position variable x is used to determine a fixed point in
space. For simplicity we assume that during the entire
motion all the material particles (both solid and fluid)
remain contained in the region Q C R

The relationship between the two different frameworks
is given by the mappings:

X: ox[0,T—Q2 4%,

1
q: Qx[0,T—w2 %, M)

representing in the first case the trajectory of a material
particle (when s is fixed) or the mapping between the refer-
ence configuration and the current one (when ¢ is fixed) and
the inverse mapping that associates with each point x € Q
the material particle that happens to be there (as in
Fig. 1). The following identities hold:

x = X(q(x, t)’ 1), s=q(X(s, t)7 t) (2)

and we assume that at any given time the mapping X(s, ¢) is

invertible, which implies that the deformation gradient
0X,(s,t

Fui= (VX(s.0), = Xa(s.0) = 20 ()

has a non-zero determinant. We assume it to be positive at

time ¢ = 0, and therefore at any subsequent time, i.e.

IF| = det F > 0. 4)

Functions having x as the space variable are usually called

spatial or Eulerian functions, while the ones having s as the

space variable are called material or Lagrangian functions.
We define the velocity field u by

oX

u(x, 1) = —(s,7) (5)
ot s=a(x.1)

and its total time derivative by

Du X

o; (X0 =25 (s,0)

D¢ or? s=a(xd)
= M x,) 4 u(x,0) - Valx, ), (©

which describe respectively the velocity and the accelera-
tion of the particle that happens to be at the point x at time
t.

To ease the reading, we will try to maintain throughout
the paper the following notation: capital letters refer to
functions whose domain is the Lagrangian one (e.g.
X(s, 7)), while lower case letters refer to functions whose
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