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a b s t r a c t

An efficient iterative method, which only requires normal modes, is presented to calculate the harmonic
response of viscoelastic structures. The method only needs to iteratively solve a diagonal dynamic equa-
tion instead of solving the dynamic equation directly such that it takes O(N2) instead of O(N3). However,
the iterative procedure based on lower normal modes cannot be converged to the exact result. A modal
correction technique is therefore introduced to improve the accuracy of iterative results. Finally, the effi-
ciency and applicability of the method are illustrated in terms of sandwich plates with different types of
viscoelastic core.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The structure with viscoelastic damping treatment may be one
of the most effective ways for structural vibration reduction and
noise control [1]. Increasing the use of structural systems with vis-
coelastic damping treatment (such as composite structural materi-
als, active control and damage tolerant systems in airplane, rocket,
spacecraft, satellite, ships and automobiles), the need to consider
the dynamic analysis of viscoelastic structures is more than ever
before. Harmonic response analysis is usually used to analyze the
response of a structure subject to steady-state oscillatory excita-
tion and therefore is of fundamental importance. The harmonic
frequency responses are of interest in the dynamic problems of
mechanical and structural systems subjected to harmonic loading
that may be caused by reciprocating or rotating machine parts
(such as compressors, fans, forging hammers and motors). Har-
monic analysis plays a very important role in many areas such as
finite element (FE) model updating, vibration and noise control,
system identification, structural damage detection and dynamic
optimization [2].

The equations of motion of linear viscoelastic structures with
zero initial conditions can be expressed as

M€uðtÞ þ
Z t

0
gðt � sÞ @uðsÞ

@s
dsþ KuðtÞ ¼ fðtÞ ð1Þ

where M and K 2 RN�N are, respectively, the mass and stiffness
matrices (assume the number of degrees of freedom (DOF) is N
and only symmetric system matrices are considered), f(t) is the
forcing vector and €uðtÞ denotes the second-order time derivative
of displacement vector u(t). Matrix g(t) consists of kernel functions,
which are used in the literature under different names (such as
after-effect functions, characteristic relaxation functions, retarda-
tion functions or heredity functions). Principally speaking, any cau-
sal model making the energy dissipation functional nonnegative,
may be considered as a candidate for a damping model. It has been
shown that [3,4], by choosing different kernel functions, the system
can be reduced to different damping systems. In the special case,
when g(t) = Cd(t) where C is a viscous damping matrix and d(t) is
the Dirac delta function, the system can be reduced to a familiar
viscously damped system. Although these damped systems are
physically different, they can be mathematically treated in a unified
damping formula. Such damping model has been considered as the
most generalized damping model within the scope of linear
dynamic analysis [5]. An exhaustive study on the generalized
damping model (including damping model, modal analysis, dy-
namic response and damping identification) may be found in
Adhikari [6]. The equations of motion similar to Eq. (1) may arise
in many different subjects, including ship dynamics [7], the energy
dissipation in structural joints [8], vibration isolation [9,10], the dy-
namic of buildings [11,12], the noise control in automobiles and air-
planes [1,13] or dynamic of railway track [14]. The governing
dynamic responses of viscoelastic structures subjected to harmonic
excitations, i.e., f(t) = Fexp(ixt) can be modeled using the following
matrix problem:
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ð�x2Mþ ixGðixÞ þ KÞUðixÞ ¼ F ð2Þ

where G(s) = L[g(t)] with s = ix and L[ ] denotes the Laplace trans-
form. Since the forcing function is harmonic, the resultant steady-
state response is also harmonic, i.e., u(t) = U(ix)exp(ixt) where
U(ix) is the complex response (displacement) vector. It should be
mentioned that viscoelastic structures can be directly modeled
using Eq. (2) since the storage and loss modulus of viscoelastic
materials can be directly obtained from experiments without any
transformations (see [15–18] for details).

Generally speaking, two kinds of methods (direct frequency re-
sponse method and mode superposition method) are usually used
to calculate the harmonic responses of viscoelastic structures. The
direct frequency response method (or so-called the direct method
[19,20]) is based on the direct frequency results in an exact calcu-
lation by solving the inversion of the dynamic stiffness matrix di-
rectly at each frequency point. In the most likely case for many
engineering applications, the direct frequency response method
must be carried out for many frequency steps. Under such circum-
stance, it may be more effective by using the reduced basis tech-
nique, especially for large-scaled models. Often the complex
modes are used as the reduced basis (i.e., so-called the modal
superposition method), which allows us to treat the equilibrium
equations as a reduced-order form such that the step-by-step solu-
tion is less costly. However, the solution of the complex modes of
viscoelastic structures is time-consuming since the frequency-
dependent damping matrix causes a nonlinear eigenproblem.
Many studies are devoted to solving the nonlinear eigenproblem
under different damping models, which can be split into state-
space approaches [16,17,21–25] based on some internal variables
and approximate approaches [5,26–31] based on normal modes.
Recently, Cortés sand Elejabarrieta [32] suggested a harmonic
analysis method for viscoelastically damped rod using the super-
position of modal contribution functions. Abdoun et al. [19]
presented a numerical method for forced harmonic vibration anal-
yses of viscoelastic structures based on the asymptotic numerical
method and a perturbation method. Martinez-Agirre and Elejabar-
rieta [20] developed a numerical method for the harmonic analysis
of viscoelastic structures in terms of higher-order eigensensitivity
technique. Bilasse et al. [33] discussed the complex modes based
numerical method for the vibration problem of viscoelastic sand-
wich plates. Chazot et al. [34] studied the computation of harmonic
response of viscoelastic multilayered structures in terms of a ZPST
shell element. More recently, Bilasse and Oguamanam [35] pre-
sented a reduced-order method for the forced harmonic response
analysis of large-scale sandwich plates with viscoelastic core. The
reduced-order model is developed by projecting the original prob-
lem onto low-dimensional subspaces spanned by the real and com-
plex modes of the viscoelastic structures. And the harmonic
response can be obtained using the asymptotic numerical method
in conjunction with automatic differentiation techniques. In gen-
eral, the complex modal superposition method requires all the
modes. Often it is difficult, or even unnecessary, to obtain all the
eigenpairs of a large-scaled model, which means that the modal
truncation scheme is generally used and the modal truncation er-
ror is therefore introduced. As a result, the quality of the calculated
harmonic responses may be adversely affected. Li et al. [3,36]
developed some correction modal methods for the harmonic anal-
ysis of viscoelastic structures to take into account the contribution
of higher (unavailable) modes in terms of the lower modes and
system matrices based on the Neumann expansion-series. How-
ever, these methods calculate the harmonic response using the
superposition of complex modes.

As we know, the complex modes can be used to exactly calcu-
late the harmonic response, but they are usually difficult to be ex-
actly obtained, especially for viscoelastic structures. In this paper,

to avoid using the complex modes, an efficient iterative method,
which only requires the classical normal modes, is presented to
calculate the harmonic response of viscoelastic structures. With
the iterative method, the complex eigensolutions are avoided such
that classical eigensolution algorithms are only involved and the
harmonic analysis of large-scaled viscoelastic structures can be
carried out efficiently. In the iterative method, the matrix consist-
ing of non-diagonal element of the modal damping matrix is
moved to the right-hand side, i.e., the method solves a diagonal dy-
namic equation instead of solving the dynamic equation directly.
The convergence condition of the iterative procedure is also given.
It will be shown that, when all the normal modes are available and
the convergence condition is satisfied, the iterative method can be
converged to the exact result. Since the modal truncation problem
is involved, the iterative procedure based on lower normal modes
cannot be converged to the exact result. Therefore, we introduce a
modal correction technique to improve the iterative result. Finally,
various numerical tests of harmonic forced vibration of sandwich
plates with various viscoelastic models, shapes and boundary con-
ditions are performed to validate the accuracy and efficiency of the
iterative method.

2. Response calculation using complete normal modes

In this section, an iterative method using complete normal
modes will be presented, and the convergence condition of it will
be also given. It will be shown that the iterative method can be
converged to the exact result if the convergence condition is
satisfied.

2.1. Classical normal modes

The natural frequencies and corresponding modes (normal
modes) can be obtained by solving the following eigenproblem

Kuj ¼ x2
j Muj for j ¼ 1;2; . . . ;N ð3Þ

where uj denotes the normal mode corresponding to the jth fre-
quency xj. The procedure to form the stiffness matrix K can be seen
in Li et al. [3,4]. We form the modal matrix W as

W ¼ u1; u2; . . . ; uN½ � ð4Þ

These normal modes satisfy the orthogonality relationship over the
mass and stiffness matrices and can be normalized such that

WT MW¼ IN and WT KW¼

. .
.

x2
j

. .
.

2
6664

3
7775¼K for j¼1;2; . . . ;N

ð5Þ

Here IN denotes the (N � N) identity matrix. The condition that the
damping matrix must satisfy to diagonalize Eq. (2), is known as the
proportional damping condition. These proportional damping con-
ditions for viscoelastically damped systems given by Adhikari [37]
take the following forms:

KM�1gðtÞ ¼ gðtÞM�1K

MK�1gðtÞ ¼ gðtÞK�1M

and

Mg�1ðtÞK ¼ Kg�1ðtÞM

The proportional damping conditions are not usually encountered
due to the fact that structures involving viscoelastic materials pres-
ent a non-uniform damping distribution. Therefore, the concern of
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