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a b s t r a c t

An efficient and accurate method for solving large-scale problems in non-linear structural dynamics is
presented. The method uses dual-Schur domain decomposition to divide a large finite element mesh into
a number of smaller subdomains, which are solved independently using a suitable mesh-size and time-
step to capture the local spatial and temporal scales of the problem. Continuity of the solution between
subdomains is enforced by Lagrange multipliers. It is shown that the proposed method is stable, accurate
and computationally more efficient than using a uniform time-step for the entire mesh. Numerical exam-
ples are presented to illustrate and corroborate these properties.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Non-linear structural dynamics of a large and complex struc-
tural system usually involves capturing not only the global
response of the structure but also small scale local phenomena
such as crack propagation, plastic yielding etc. This requires a very
fine spatial and temporal discretization in certain regions of inter-
est within the domain whereas a relatively coarser discretization
suffices elsewhere. Traditionally, such problems have been solved
by using a finite element discretization in space and a finite differ-
ence time stepping scheme for numerical time integration. How-
ever, most methods in the current literature are formulated using
a uniform time step for the entire mesh. This is computationally
very expensive for problems where capturing physical phenomena
at multiple temporal scales is important.

Researchers in different fields have explored several approaches
to overcome the limitations of uniform time stepping methods. The
text by Hairer, Lubich and Wanner [1] (see section VIII.4 for details)
summarizes some of the earliest attempts to split the fast and slow
temporal scales in ordinary differential equations (ODEs) using
multi-rate methods [2]. These methods have gained popularity
for applications where the computational problem size is usually
very large such as astronomy and molecular dynamics.

In structural and solid mechanics, an approach based on varia-
tional multi-scale methods in space, proposed by Hughes and co-
workers [3,4], was explored for multi-scale temporal integration
by Bottasso [5]. A space–time multi-scale homogenization ap-
proach has also been presented by Fish and co-workers [6]. Other
space–time formulations based on time-discontinuous Galerkin fi-
nite elements have been explored by Hughes and Hulbert [7,8] for
elasto-dynamics. Haber and co-workers [9] further investigated
adaptive time refinement to capture temporal multi-scale phe-
nomena. For long-time integration, Bathe and co-workers [10,11]
proposed an implicit composite time integration scheme that
works well for conserving energy and momentum especially in
problems with large deformations. Recently, Bathe and Noh [12]
also formulated an explicit composite time-integration scheme
and showed that the Bathe schemes (both implicit and explicit)
have many desirable numerical properties such as enhanced stabil-
ity, better accuracy, improved high-frequency dissipation and neg-
ligible dispersion in comparison to many existing time-integration
schemes [13,14]. Important contributions to this area were also
made by extending the variational time integrators to include
asynchronous time integration by Lew et al. [15,16] and Matous
and co-workers [17,18].

In this paper, an approach based on domain decomposition
(DD) is adopted for separating different spatial & temporal scales.
As the name suggests, DD methods usually divide the computa-
tional domain into several smaller subdomains, solve the subdo-
mains separately and couple the solutions back together. The
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text by Toselli and Widlund [19] and the survey article by Fragakis
and Papadrakakis [20] provide an extensive summary of various
DD methods in the literature. Some of the early works in this area
are the mixed and multi-time integration methods by Belytschko
and co-workers [21] and subcycling methods by Smolinski [22]
and Daniel [23]. Further information on these types of methods
is readily available in standard texts on finite element methods
[24–26].

A dual-Schur domain decomposition method that uses Lagrange
multipliers to enforce continuity of the solutions between subdo-
mains was presented by Farhat and co-workers [27,28] as the ‘fi-
nite element tearing and interconnecting’ (FETI) method. The
FETI method was extended for structural dynamics [29] by enforc-
ing continuity of a chosen kinematic quantity (displacement,
velocity or acceleration). A spectral stability analysis [30] showed
that the the dynamic FETI algorithm is only weakly stable, and pre-
dicted a linear growth of instability. Farhat and co-workers also
proposed a time parallel iterative method for dynamics [31,32].
Gravouil and Combescure [33,34] further extended the FETI meth-
od for dynamics to incorporate the use of multiple time-steps be-
tween the subdomains. They found that imposing continuity of
time-discretized velocities at the interface led to a stable algorithm,
and did not exhibit the theoretically predicted linear growth of
instability. However, they also pointed out that the method had
spurious numerical dissipation. Prakash and Hjelmstad [35] formu-
lated a modified multi-time-step method using FETI for dynamics
based on the time discretized equations of motion for linear prob-
lems. This method was shown to be stable and to exactly preserve
the energy norms of individual subdomains. In terms of computa-
tional cost, this method was shown to be significantly more effi-
cient, when compared to other coupling methods in the
literature or to uniform time-step integration.

This paper presents a multi-time-step method for highly non-
linear transient problems by first formulating the correct set of
time-discrete equations of motion, and using a consistent lineariza-
tion to extend the linear multi-time-step method of Prakash and
Hjelmstad [35] to highly non-linear problems. It is shown that
the proposed method is stable, accurate and computationally more
efficient than using a uniform time-step for the entire mesh.
Numerical examples are presented to illustrate the method and
corroborate its performance in terms of the accuracy and efficiency
of computation.

2. Solution of non-linear structural dynamics

First, we briefly describe conventional time integration ap-
proaches for problems in non-linear structural dynamics. The
semi-discrete equations governing the non-linear dynamic behavior
of a structural model can be written by defining the residual r as:

rð€uðtÞ; _uðtÞ;uðtÞÞ � M€uðtÞ þ pðuðtÞ; _uðtÞÞ � f ðtÞ ð1Þ

where M represents the global mass matrix, p represents the inter-
nal force vector, f represents the external force vector, u denotes
the vector of displacements and each super-imposed dot denotes
one time-derivative. Note that the residual function r may include
material and/or geometric non-linearities. The equation of motion
can then be written as:

rð€uðtÞ; _uðtÞ;uðtÞÞ ¼ 0 ð2Þ

This is a system of second-order, ordinary differential equations
(ODEs) governing the non-linear dynamics of a structure. In addi-
tion to the governing Eq. (2), one also needs to specify the initial
and boundary conditions. The initial state of the structure at time
t0 can be specified as:

uðt0Þ ¼ u0; _uðt0Þ ¼ v0 ð3Þ

where u0 and v0 are the specified initial displacement and velocity
vectors respectively. The Dirichlet and Neumann boundary condi-
tions are specified as:

uðtÞ ¼ �uðtÞ on CD ð4Þ

f ðtÞ ¼ �f ðtÞ on CN ð5Þ

where �u denotes the specified displacement for the Dirichlet
boundary and �f denotes the specified equivalent loads on the Neu-
mann boundary.

The system of second-order ODEs (2) is usually solved numeri-
cally over a time interval of interest I � ½t0; tN� where tN is the final
time of the simulation. The interval I is divided into N time-steps of
size Dt ¼ tn � tn�1 for 1 6 n 6 N and the time derivatives are
approximated using a finite difference (FD) scheme over these
time-steps. The equation of motion is then solved at these discrete
time-instants resulting in a system of non-linear algebraic
equations.

The displacement, velocity, and acceleration vectors are approx-
imated as dn � uðtnÞ, vn � _uðtnÞ and an � €uðtnÞ for a given instant of
time tn. A widely used time integration technique for this approx-
imation is the Newmark family of schemes [36] given by:

vnþ1 ¼ vn þ Dt½ð1� cÞan þ canþ1� ð6Þ

dnþ1 ¼ dn þ Dtvn þ
1
2

Dt2½ð1� 2bÞan þ 2banþ1� ð7Þ

where c and b are algorithmic parameters. Using these approxima-
tions, the equation of motion at an instant of time tnþ1 can be writ-
ten as:

rðanþ1;vnþ1;dnþ1Þ ¼Manþ1 þ pðdnþ1;vnþ1Þ � f nþ1 ¼ 0 ð8Þ

Eqs. (6)–(8) form a system of non-linear algebraic equations, which
can be solved using the Newton’s method at every time-step in
the interval I. Note also that at t0 one must compute the initial
acceleration a0 from the equilibrium equation at t0:

Ma0 ¼ f ð0Þ � pðu0;v0Þ ð9Þ

To explain the iterative solution procedure, let the state of the sys-
tem at any instant of time tn be defined as zn � fan;vn;dngT . Thus,
assuming that the state zn is known, the task is to find znþ1 from
Eqs. (6)–(8). In order to solve Eqs. (6)–(8) using the Newton’s meth-
od, an initial guess (iteration i ¼ 0) for the state z0

nþ1 at tnþ1 is as-
sumed. A commonly used guess is based on the previous
converged state as:

a0
nþ1 ¼ an ð10Þ

v0
nþ1 ¼ vn þ Dt½ð1� cÞan þ ca0

nþ1� ð11Þ

d0
nþ1 ¼ dn þ Dtvn þ

1
2

Dt2½ð1� 2bÞan þ 2ba0
nþ1� ð12Þ

where the superscript denotes the Newton iteration number, the
subscript n refers to the converged values from the previous time
step tn. The solution at iteration i is updated by solving for
Dzi

nþ1 � fDai
nþ1;Dv i

nþ1;Ddi
nþ1g

T
from the linearized form of the Eqs.

(6)–(8) as follows:

MDai
nþ1 þ Di

nþ1Dv i
nþ1 þ K i

nþ1Ddi
nþ1 ¼ �rðdi

nþ1;v i
nþ1Þ ð13Þ

Dv i
nþ1 ¼ DtcDai

nþ1 ð14Þ
Ddi

nþ1 ¼ Dt2bDai
nþ1 ð15Þ

where K i
nþ1 and Di

nþ1 represent the tangent stiffness and damping
matrices. These matrices depend upon the assumed solution and
need to be re-computed at every Newton iteration from the follow-
ing relations:
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