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a b s t r a c t

A novel procedure for deriving approximate explicit expressions of the frequency response function (FRF)
matrix of linear discretized structures with uncertain parameters is presented. The following main steps
are required: (i) to decompose the deviation of the structural matrices with respect to their nominal val-
ues as sum of rank-one matrices; (ii) to derive the so-called Rational Series Expansion (RSE) which provides
an approximate explicit expression of the FRF holding for any uncertainty model. The potentials of the
RSE are demonstrated within the interval framework by determining the region of the modulus of the
FRF of structures with uncertain-but-bounded parameters.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In Structural Dynamics, the response can be evaluated in two
dual domains, often referred to as time domain and frequency do-
main. In the time domain, the response is described by the ampli-
tude vs. time and the main purpose of the dynamic analysis is the
evaluation of the response maxima. Conversely, in the frequency
domain, the response is described in terms of the modulus and
phase vs. the circular frequency. In this context, the main operator
is the frequency response function (FRF), also called transfer function.

The FRF is a complex function able to provide information about
the behavior of a structure over a range of frequencies. For in-
stance, the frequency domain response of an oscillator is evaluated
simply multiplying the FRF by the Fourier transform of the forcing
function. For multi-DOFs structural systems, the FRF describes the
relationship between a local excitation applied at one location on
the structure and the resulting response at another and/or the
same location. It follows that the frequency domain approach often
gives information useful for structural design purposes that cannot
be alternatively caught by the time domain approach. Moreover, it
is sometimes more convenient to perform the analysis in the
frequency domain; as an example, for structures with frequency-
dependent parameters or subjected to stationary random
processes and so on.

Standard structural analysis tools, either in the time or fre-
quency domain, are devoted to the numerical evaluation of the sys-
tem response due to external loads for given geometry and
material properties. However, in practical engineering problems,
material properties, geometry and boundary conditions of a struc-
ture may experience fluctuations due to measurement and manu-
facturing errors or other factors. The variability in the structural
parameters may significantly affect the response. Although such
variability is often inherent in the material properties and in the
layout of the structure, it could also be introduced by the analyst
to get an optimal design or for identification purpose.

The uncertainties are usually described following two different
points of view, known as probabilistic and non-probabilistic ap-
proaches. The probabilistic approach requires a wealth of data,
often unavailable, to define the probability density function of
the uncertain structural parameters. If available information is
fragmentary or incomplete, non-probabilistic approaches, such
as convex models, fuzzy set theory or interval models [1], can
be alternatively applied. Among non-probabilistic approaches,
the interval model may be considered as the most attractive ana-
lytical tool. This model, stemming from the so-called interval
analysis [2–5], turns out to be the most suitable approach when
the upper and lower bounds of a non-deterministic property are
well defined but information on the type of the distribution is
missing.

In the framework of probabilistic approaches, the FRF has been
evaluated by Falsone and Ferro [6,7] in explicit form by taking into
account the properties of the natural deformation modes of finite
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element discretized structures. Manan and Cooper [8] developed a
probabilistic method to determine the uncertainty bounds of FRFs
by using the Polynomial Chaos Expansion technique.

Within a non-probabilistic context, Moens and Vandepitte [9]
proposed an interval finite element (IFE) approach to efficiently
calculate close outer approximations on the FRF envelopes of struc-
tures with interval uncertainties. The FRF of systems with uncer-
tain-but-bounded parameters was also evaluated by Manson [10]
employing both the complex interval analysis and the complex af-
fine arithmetic. De Munck et al. [11] proposed a response surface
based hybrid (global optimization and interval arithmetic) proce-
dure to predict the bounds of the FRFs of models with interval in-
puts using the interval and fuzzy finite element method. An IFE
method for evaluating the FRF has been recently developed by Yao-
wen et al. [12] by extending to dynamic problems the element-by-
element technique previously proposed by Muhanna and Mullen
[13] within a static setting. Muscolino and Sofi [14] derived an
approximate explicit expression of the FRF matrix to perform the
stochastic analysis of truss structures with uncertain-but-bounded
parameters subjected to stationary multi-correlated Gaussian ran-
dom processes.

The aim of the present paper is to derive an approximate expli-
cit expression of the FRF matrix of arbitrary discretized structures
with uncertain parameters by properly generalizing the approach
presented in Ref. [14]. The proposed procedure requires the follow-
ing main steps: (i) the decomposition of the deviation of the mass,
stiffness and damping matrices with respect to their nominal val-
ues as sum of rank-one matrices; (ii) the derivation of the so-called
Rational Series Expansion (RSE) which provides an approximate ex-
plicit expression of the FRF of structural systems with uncertain
parameters.

A remarkable feature of the proposed RSE of the FRF is that it
holds for arbitrary discretized structures regardless of the model
assumed for the uncertain parameters, either probabilistic or
non-probabilistic. For the sake of generality, in the paper, first
the RSE is derived as an explicit function of the fluctuating struc-
tural parameters without introducing any assumption on the mod-
el describing the variability of such parameters. Then, the RSE is
applied within a non-probabilistic context by assuming that the
uncertain parameters are bounded by intervals. Closed-form
expressions of the bounds of the modulus of the interval FRFs of
structures with uncertain-but-bounded parameters are derived
through the joint use of the RSE and the so-called improved interval
analysis, recently presented in Ref. [14,15] to limit the overestima-
tion affecting the ‘‘ordinary’’ or classical interval analysis [2] due to
the dependency phenomenon [5,13,16].

The accuracy of the proposed RSE of the FRF is demonstrated
through numerical results concerning both truss and frame struc-
tures with uncertain material and geometrical properties.

2. Discretized structures with uncertain parameters

2.1. Equations of motion

The equations of motion of a quiescent n-DOF classically
damped linear structure with uncertain properties subjected to
the forcing vector fðtÞ can be cast in the form:

MðaÞ€uða; tÞ þ CðaÞ _uða; tÞ þ KðaÞuða; tÞ ¼ fðtÞ; ð1Þ

where M(a), C(a) and K(a) are the n � n mass, damping and stiff-
ness matrices of the structure which depend on the dimensionless
uncertain parameters collected in the vector a ¼ ½a1; a2; . . . ;

ar�T of order r, with the apex T meaning transpose; u(a, t) is the vec-
tor of displacements and a dot over a variable denotes differentia-

tion with respect to time t. The Rayleigh model is herein adopted
for the damping matrix, i.e.:

CðaÞ ¼ c0MðaÞ þ c1KðaÞ; ð2Þ

where c0 and c1 are the Rayleigh damping constants having units
s�1 and s, respectively.

The j-th element of the vector a denotes the dimensionless fluc-
tuation aj of the j-th uncertain parameter dj with respect to its
nominal value d0,j, i.e. dj = d0,j(1 + aj). In structural engineering
applications, such fluctuations can be reasonably assumed to sat-
isfy the condition |aj| < 1, with the symbol |�| denoting absolute va-
lue. For instance, if the uncertain Young’s modulus of the j-th
structural element is expressed as Ej = E0,j(1 + aj), with E0,j denoting
the nominal value, the fluctuation aj must satisfy the condition
|aj| < 1 to yield always positive values of Ej.

It is worth mentioning that the relationship between the struc-
tural matrices, M(a) and K(a), and the vector a is often linear.
Nevertheless, when such relationship is nonlinear, it is always pos-
sible to make the mass, damping and stiffness matrices depend lin-
early on the uncertain parameters by applying a suitable variable
transformation. As an example, in the case of truss structures with
fluctuating length of the bars, Li, since the stiffness matrix is
proportional to 1/Li, the position Qi = 1/Li can be introduced to
obtain a linear dependency on Qi [7].

Based on this concept, the n� n mass, stiffness and damping
matrices, M(a), K(a) and C(a), can be expressed as linear functions
of the uncertain properties, i.e.:

MðaÞ ¼M0 þ
XrM

j¼1

ajMj;

KðaÞ ¼ K0 þ
XrMþrK

j¼rMþ1

ajKj;

CðaÞ ¼ C0 þ c0

XrM

j¼1

ajMj þ c1

XrMþrK

j¼rMþ1

ajKj;

ð3a-cÞ

where rM + rK = r and

M0 ¼MðaÞja¼0; Mj ¼
@

@aj
MðaÞ

����
a¼0

;

K0 ¼ KðaÞja¼0; Kj ¼
@

@aj
KðaÞ

����
a¼0

:

ð4a-dÞ

In the previous equations, M0, K0 and C0 = c0M0 + c1K0 denote the
mass, stiffness and damping matrices of the nominal structural sys-
tem (i.e. for a = 0), which are positive definite symmetric matrices
of order n � n; furthermore, Mj and Kj are positive semi-definite
symmetric matrices of order n � n. Without loss of generality, in
Eq. (3) mass and stiffness uncertainties are assumed to be fully
disjoint.

2.2. Frequency domain response

It is well-known that the so-called time domain analysis can
be used to determine the response of any linear structural sys-
tem to any arbitrary loading [17]. However, in some cases, such
as for structures with frequency-dependent parameters or in
presence of stochastic stationary excitations and so on, it is
more convenient to perform the analysis in the so-called
frequency domain. Moreover, the frequency domain approach
often gives information useful for structural design purposes
that cannot be caught in the time domain [18]. The present
paper addresses the problem of the evaluation of the FRF of
discretized structural systems when the model parameters are
subjected to variations.
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