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a b s t r a c t

Different from the independent design of macrostructures or material microstructures, a two-scale topol-
ogy optimization algorithm is proposed by using the bi-directional evolutionary structural optimization
(BESO) method for the concurrent design of the macrostructure and its composite microstructure. It is
assumed that the macrostructure is made of composite materials whose effective properties are calcu-
lated through the homogenization method. By conducting finite element analysis of both structures
and materials, sensitivity numbers at the macro- and micro-scale levels are derived. Then, the BESO
method is used to iteratively update the macrostructures and the composite microstructures according
to the elemental sensitivity numbers at both scales. Some 2D and 3D numerical examples are presented
to demonstrate the effectiveness of the proposed optimization algorithm. A variety of optimal macro-
structures and optimal material microstructures have been obtained.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Structural optimization is becoming increasingly important due
to the limited material resources, environmental impact and tech-
nological competition, all of which demand lightweight, low-cost
and high-performance structures. Structural topology optimization
technique seeks to achieve the best performance of a structure
while satisfying various constraints such as a given amount of
material. Compared with size and shape optimizations, topology
optimization provides much more freedom and allows the de-
signer to create novel and highly efficient conceptual designs for
structures. Over the last two decades, various topology optimiza-
tion algorithms, e.g. homogenization method [1], solid isotropic
material with penalization (SIMP) [2–4], evolutionary structural
optimization (ESO) [5,6], and level-set technique [7,8] have been
developed. Unlike the continuous density-based topology meth-
ods, the ESO/BESO methods represent the structural topology and
shape with discrete design variables (solid or void) so that the
resulting design gives a clear structural boundary [6,9]. ESO was
originally developed based upon a simple concept of gradually
removing redundant or inefficient material from a structure so that
the resulting topology evolves towards an optimum [6]. A later
version of the ESO method, namely the bi-directional ESO (BESO)
method, allows not only removing materials, but also adding

materials to the design domain [10,11]. It has been demonstrated
that the current BESO method is capable of generating reliable
and practical topologies for various types of structures with high
computational efficiency [9,12].

Currently, topology optimization techniques are mainly used to
solve one-scale design problems either for the optimal design of
macrostructures to improve their structural performance or for
the material design to develop new microstructures with pre-
scribed or extreme properties [13–17]. The optimal design of a
macrostructure assumes that the structure is composed of given
materials which can be selected from the available material data-
base. The material design assumes that the material is made of
periodic base cells and the macroscopic effective properties of
the heterogeneous material are homogenized (averaged) according
to the microstructure of the base cell. The inverse problem is a typ-
ical topology optimization problem for the material design which
seeks an optimal microstructure of the base cell with prescribed
or extreme macroscopic properties [18]. Such a microstructural de-
sign approach greatly enriches available materials which can be se-
lected for constructing macrostructures by virtue of material
properties, so as to satisfy required performance specifications.

The material selection for macrostructures is a complex process
which involves not only material properties but also the service
conditions such as structure shape, applied loadings and boundary
conditions etc. Instead of selecting materials, Huang et al. [19] for-
mulated a two-scale topology optimization problem and directly
designed the microstructures of cellular materials and composites
for given shapes of macrostructures using the BESO method. Zhang
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and Sun [20] discussed the scale effect in two-scale topology opti-
mization of cellular materials and structures. However, an ideal de-
sign of a macrostructure should be the structure which has an
optimal macroscopic topology, and meanwhile, is composed of
materials/composites with optimal microstructures. That is, we
should concurrently design the topologies of a macrostructure
and its material microstructure. Inspired by biological systems,
Rodrigues et al. [21] proposed a hierarchical computational proce-
dure by integrating the macrostructures with a series of local
material microstructures using the continuum density-based
method, and Coelho et al. [22] extended this hierarchical procedure
to the three-dimensional elastic structures. However, it is impossi-
ble to find optimal microstructure point-to-point even using paral-
lel computing techniques. By constraining the volume fractions at
the macro-level and the micro-level separately, Liu et al. [23] con-
ducted a concurrent topology optimization of materials and struc-
tures where the macrostructure is solely composed of a material.
The method was extended by Yan et al. [24] for minimizing the
compliance of 2D thermoelastic structure, and by Niu et al. [25]
for maximizing structural fundamental frequency. Deng et al.
[26] studied the multi-objective design of lightweight thermoelas-
tic structures using the concurrent optimization technique to min-
imize the structural compliance and the thermal expansion of a
certain surface simultaneously. Unfortunately, the continuum den-
sity-based method cannot absolutely preclude ‘‘grey areas’’ with
intermediate densities in the structural topology. The material
properties at ‘‘grey areas’’ are roughly estimated through the mate-
rial interpolation scheme but their microstructures are still
unknown.

This paper proposes a two-scale topology optimization ap-
proach based on the BESO method for concurrently designing
structures and materials. Different from the continuum density-
based method, BESO utilizing discrete design variables is more
suitable for concurrent topology optimization of structures and
materials because there is no need to assume any properties or
microstructures for intermediate materials for finite element anal-
ysis. The layout of the paper is as follows. A two-scale concurrent
optimization model is established and illustrated in Section 2.
The homogenization of effective material properties and sensitivity
analysis of both macrostructures and materials are presented in
Section 3. The procedure for implementing the BESO method for
the concurrent optimization of macrostructures and material
microstructure is given in Section 4. Section 5 presents several
2D and 3D numerical examples to demonstrate the effectiveness
of the proposed optimization algorithm. Concluding remarks are
given in Section 6.

2. Concurrent optimization model

Consider a macrostructure with known boundary conditions
and external forces as illustrated by Fig. 1(a). The macrostructure

is composed of two-phase composite with microstructures
(Fig. 1(b)) periodically repeated by the base cell (Fig. 1(c)). In
Fig. 1(c), phase 1 with density q1 and phase 2 with density q2

are represented by green and grey respectively. It is assumed that
phase 1 is stiffer and heavier than phase 2 (E1 > E2, q1 > q2). The
optimization objective is to find the spatial optimal topologies
for both the macrostructure and its material microstructure so that
the resulting macrostructure has the best loading-carrying capabil-
ity for a given total weight. Optimizations at the two scales will be
integrated into one system and resolved concurrently. For such a
two-scale optimization problem, there are two finite element mod-
els, namely the macro model for macrostructure and the micro
model for the base cell of material. To seek the maximum stiffness
(or minimum mean compliance) of the macrostructure, the con-
current topology optimization can be formulated as

Find xi; xj ði ¼ 1;2; . . . ;M; j ¼ 1;2; . . . ;NÞ

Minimize : Cðxi; xjÞ ¼
1
2

XM

i¼1

UT
i K iðxi; xjÞU i ð1Þ

Subject to : Kðxi; xjÞU ¼ F ð2aÞ

mðxi; xjÞ �W�
f m0 ¼ 0 ð2bÞ

xi; xj ¼ 0 or 1 ð2cÞ

where C denotes the mean compliance of the structure. F and U rep-
resent the external force vector and the nodal displacement vector
of the structural at the macro level, respectively. K is the stiffness
matrix of the macrostructure which can be assembled by the ele-
mental stiffness matrix Ki. M is the total number of finite elements
in the macro structure. W�

f is the prescribed weight fraction of the
final design. xi and xj are the binary design variables for the macro
and micro models, respectively. In the macro model, xi = 1 repre-
sents a solid element (two-phase composite or uniform material)
and xi = 0 represents a void element. In the micro model, when an
element is made of phase 1, xj = 1 and when phase 2, xj = 0.
m0 ¼

PM
i¼1Viq1 is the reference weight of the structure when the

whole design domain is fully filled with phase 1. The weight of
the design, m, can be expressed by

m ¼
XM

i¼1

xiViqi; ðxi ¼ 0 or 1Þ ð3Þ

where qi is the density of a solid element in the macro model. It is
related to the micro model through mass conservation as

qi ¼

XN

j¼1

Vj½xjq1 þ ð1� xjÞq2�

Vi
; ðxj ¼ 0 or 1Þ ð4Þ

Fig. 1. A structure composed of composites: (a) macrostructure; (b) microstructure; (c) a base cell.
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